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Abstract—In contrast to second-generation DNA sequencing tech-
nologies, emerging third-generation technologies are capable of
delivering reads that are long enough to enable perfect genome
assembly. Unfortunately, the benefits of long reads are accompanied
by higher rates of read errors. This motivates a question of
fundamental import: What read-length and error-rate combinations
allow for perfect assembly of the genome? Formal investigation of
this tradeoff is complicated by the fact that tractable probabilistic
models for the genome sequence and error process fail to capture
key features of the problem: real genomes contain long repetitive
patterns, and read errors are often bursty and sequence-dependent.

In order to circumvent these modeling barriers and take a first
step towards the study of this question, we consider a simple setting:
the genome sequence is arbitrary, and the read errors are erasures
that can occur at adversarially chosen positions, up to a limit in
the number of erasures per read and per genome position. In this
context, we show that a natural error-correction scheme is optimal
in the sense that it recovers the error-free k-spectrum of the genome
for the largest possible k. The worst-case nature of our analysis
ensures that the proposed error-correction method is robust and
allows us to study its performance under stochastic error models.
As a result, we show that, for several real genomes, the impact of
read errors on the information-theoretic requirements for perfect
assembly is relatively mild.

I. INTRODUCTION

Current DNA sequencing technologies are based on a two-step
process. First, tens or hundreds of millions of fragments from
random locations on the DNA sequence are read via shotgun
sequencing. Second, these fragments, called reads, are merged
to each other based on regions of overlap, using an assembly
algorithm.

Roughly speaking, different shotgun sequencing platforms can
be distinguished from the point of view of three main metrics:
the read length, the read error rate, and the read throughput.
In the last decade, the so-called next-generation sequencing
platforms have attained considerable success at employing heavy
parallelization in order to achieve high-throughput shotgun se-
quencing. This allowed a significant reduction in the cost and
time of sequencing, causing an explosion in the number of new
sequencing projects and the generation of massive amounts of
sequencing data.

In order to guarantee low error rates, most of these next-
generation technologies are restricted to short read lengths,
shifting some of the burden of sequencing to the assembly step.
In practice, this results in very fragmented assemblies, with large
gaps and little linking information between fragments [1]. On the
other hand, recent technologies that generate longer reads suffer
from lower throughput and much higher error rates1.

1One example of a short-read-length technology is Illumina, with reads of
length ∼ 200 base pairs and error rates of about 1%. In contrast, PacBio reads
can be several thousand base pairs long, with error rates of about 10-15%.

Given this technology trend, the natural questions to ask
are: what is the impact of read errors on the performance of
assemblers? Is the negative impact of read errors more than
offset by the increase in read lengths in long-read technologies?
It is well known that read errors have a significant impact on
assembly algorithms. For example, in de Bruijn graph based
algorithms [2–4], read errors create extraneous nodes and edges
in the assembly graph, which results in added complexity and
poses challenges to the assembly of reliable contigs. In practice,
this issue is often dealt with using error-correction tools [5–10]
that attempt to clean up the reads before the assemby algorithm is
applied. In fact, it has been shown that even noisy long reads, if
properly preprocessed, can be used to obtain finished assemblies
of bacterial genomes [11–15]. However, such claims must usually
be made on a dataset-by-dataset basis. Moreover, error correction
tools and assembly pipelines are in general evaluated relative
to each other, and the evaluation is contingent on the existence
of a reliable reference genome. A more fundamental question
regarding the performance of assembly pipelines can be asked
from an information-theoretic point of view: given a read length,
an error rate and a coverage depth (number of reads per base),
is there enough information in the read data to uniquely recon-
struct a target genome? Do errors significantly increase the read
length and/or coverage depth requirements? An answer to these
basic feasibility questions can provide an algorithm-independent
framework for evaluating different sequencing technologies and
assembly pipelines.

Such a framework was initiated in [16, 17] for error-free reads.
In [17], a feasibility curve relating the read length and coverage
depth needed to perfectly assemble a genome was characterized
in terms of the repeat complexity of the genome (see examples
in Fig. 1). Evaluating this curve on several genomes revealed an
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(b) R. sphaeroides

Fig. 1: Feasibility region for a target error probability ε = 0.01. The thick black
curve is a feasibility lower bound for any algorithm, and the green line represents
the performance of the Multibridging algorithm [17]. In the vertical axis, the
normalized coverage depth is N/NLW , where NLW ≈ G

L
log

(
G
ε

)
is the

Lander-Waterman coverage depth; i.e., the number of reads required to cover
the whole genome with a probability 1− ε.
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interesting threshold phenomenon: if the read length is below a
certain critical value `crit, reconstruction is impossible; a read
length slightly above `crit and a coverage depth close to the
Lander-Waterman depth cLW (i.e., just enough reads to cover
the whole sequence) is sufficient. The critical read length `crit

is given by the length of the longest interleaved repeat in
the genome (Fig. 2). and had appeared in earlier works by
Ukkonen and Pevzner [18, 19] in the context of sequencing by
hybridization.

s

s

(a)

(b)

Fig. 2: (a) Illustration of an interleaved repeat and (b) an approximate interleaved
repeat.

Given this framework, the impact of read errors on genome
assembly can be studied by asking how the information-theoretic
requirements captured by these feasibility curves change when
there are errors in the reads. In particular, understanding the
impact of errors in the critical read length `crit is important
from a practical point of view: while increasing the coverage
depth of the experiment incurs a (roughly) proportional increase
in cost, the read length is usually dictated by the technology
and chemistry utilized and cannot be tuned. Hence, designing
assembly algorithms which succeed whenever the read length
exceeds the information-theoretic requirement is highly desirable.

When reads have errors, a natural conjecture is that one should
view approximate repeats as exact repeats, and the critical read
length required for assembly, instead of `crit, would be `crit,app,
defined as the length of the longest approximate interleaved
repeats. This number always exceeds `crit and, when evaluated
on real genomes (for an appropriate definition of approximate
repeats) can be seen to be substantially larger than `crit. But
is L > `crit,app actually required from a fundamental point-
of-view? In this work, we study this question under a simple
erasure error model and show that L > `crit,app is not needed for
perfect assembly. In fact, under this model, the fundamental read
length requirement essentially remains unchanged by the addition
of errors, as illustrated in Fig. 3.

The impact of read errors on genome assembly was previously
studied in [20, 21]. In [20], the authors proposed an assembly
scheme based on first using a typicality test to generate a set
of cleaned up reads and then assembling them as if they were
error free. Based on this approach, they obtained a result in the
same spirit of the main result in this paper. More precisely, they
showed that, as long as the error rate is below a threshold, the
requirements for assembly in terms of read length and coverage
depth are the same for noisy and noiseless reads. However,
two important modeling assumptions were necessary in order to
establish this result.
1) The genome was assumed to be an i.i.d. sequence of length

G, and the asymptotic regime G→∞ was considered.
2) Errors were assumed to be i.i.d. for some fixed and known

probability p.
It is well known that in practice the main obstacle to assembly are
long repeats in the genome, which are not well modeled by i.i.d.
sequences. Therefore, due to (1), the asymptotic result in [20]
cannot be used to characterize sequence-specific bounds such as

those in Fig. 3. While (2) is motivated by nominal error rates that
are usually provided for each sequencing technology, read errors
often occur in bursts (generating so-called chimeric segments)
and in a sequence-specific fashion (e.g., in homopolymers).
Typicality-based approaches are usually sensitive to deviations
from the probabilistic model assumed, even if the true error
process is more tractable than the one assumed (i.e., it has a
lower error rate, or a higher capacity). Hence, an error-correction
scheme that does not rely heavily on the error model is desirable.

In this work, we take an initial step in studying this problem
without assumptions (1) and (2), and consider the following
setting: the genome sequence is deterministic and comprises a
single chromosome, and the read errors are erasures that can
occur at adversarially chosen positions, but under constraints in
the number of erasures per read and per base in the genome.
Under this framework, we ask a fundamental question: when
is there enough information in the set of reads to allow error
correction to be performed in an unambiguous way? We formally
pose this question by defining the k-spectrum of the genome (i.e.,
the set of all error-free length-k substrings) as the goal of the error
correction problem. As we argue, reconstructing the k-spectrum
for a large k is as difficult as the perfect reconstruction problem,
and we can focus on the problem of characterizing the largest
value of k for which the set of reads unambiguously determines
the k-spectrum.

In order to answer this question, we develop a notion of worst-
case typicality, which serves as a test to identify true k-mers
based on the read data. Under the adversarial sequence and error
model considered, this typicality approach has strong theoretical
guarantees: it can reconstruct the k-spectrum for the largest
possible k. Furthermore, the techniques developed under this ad-
versarial model, once carried over to a probabilistic error model,
exhibit nice robustness properties. This allows us to combine this
typicality test with assembly algorithms developed for error-free
reads to gain insight into the fundamental performance limitations
of genome assembly from reads with errors. In particular, we can
explicitly compute the requirements for perfect assembly in terms
of read length and coverage depth for small bacterial genomes,
and show that they do not differ significantly from the error-free
case considered in [17], as illustrated in Fig. 3. This result is
relevant as it suggests that the higher error rates of current long-
read sequencing technologies do not fundamentally impact their
ability to generate perfect assemblies.

The rest of the paper is organized as follows. In Section II,
we motivate the spectrum reconstruction problem as a way to
study the error correction problem, describe the error model, and
state our main result. In Section III, we describe the worst-case
typicality test, which we use to prove our main result. Section IV
is dedicated to show that, although our main results are derived
under an adversarial error model, they can be used to compute
feasibility curves for a probabilistic error model. Finally, Section
V discusses practical limitations of the approach considered in
this paper, and Section VI concludes the paper.

II. ASSEMBLY VIA SPECTRUM RECONSTRUCTION

In the DNA assembly problem, the goal is to reconstruct a
sequence s = (s[1], ..., s[G]) of length G with symbols from the
alphabet Σ = {A,G,C,T}. In order to simplify the exposition
and avoid edge effects, we will assume a circular DNA model;
thus, {s[i]}∞i=1 is a periodic sequence with (minimum) period G.
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Fig. 3: Lower bound for assembly feasibility region with error-free reads and upper bound when reads have erasures with probability p.

Our results hold in the non-circular case as well under minor
modifications. We will let s`i be the substring of length ` starting
at s[i]; i.e., s`i = (s[i], s[i+ 1], ..., s[i+ `− 1]).

The sequencer provides a set of N reads R = {r1, ..., rN}
from s, each of length L. In the noiseless case, each read is
a length-L substring of s with an unknown starting location.
Our focus, however, will be on noisy read models, where each
read in R may be corrupted by noise. We define the k-spectrum
of s as the multiset Sk(s) = {skt : t = 1, ..., G}, and we let
supp(Sk(s)) ⊂ Σk be the support of such multiset. Whenever
the sequence s is clear from the context, we will simply write
Sk and supp(Sk). Following the convention in the field, we will
often refer to a length-k sequence in Σk as a k-mer. In this work,
we consider three related assembly problems. In decreasing order
of difficulty, they are

A1. Reconstruct the entire sequence s from R.
A2. Reconstruct the k-spectrum of s, Sk(s), from R, for some

k ≤ L.
A3. Reconstruct the support of the k-spectrum of s,

supp (Sk(s)), from R, for some k ≤ L.

While reconstructing the spectrum or just its support rather than
the complete sequence s may seem to be significantly more
modest goals than (A1), we claim that they are almost as difficult
as perfect assembly, and can be seen as intermediate steps towards
(A1).

Consider the problem (A2) of reconstructing the spectrum Sk.
We know from results in [18, 19] that for every sequence s, there
exists a critical read length `crit(s) as a function of the repeat
statistics of s (see Appendix VII-A for a formal definition), for
which we have the following.

Theorem 1. If k > `crit(s), then s is the unique sequence with
k-spectrum Sk(s). Conversely, if k ≤ `crit(s), there exists a
sequence s′ 6= s for which Sk(s) = Sk(s′).

Hence by solving the assembly problem (A2) for sufficiently
large k, we also solve the (standard) assembly problem (A1). As
it turns out, similar guarantees can be given for the assembly
problem (A3). As we describe in Section VII-A, previous results
from [17, 22] imply that there exists another critical read length
¯̀
crit(s) ≥ `crit(s) such that, if k > ¯̀

crit(s), s can be assembled
from supp(Sk). More precisely, we have the following.

Theorem 2 ([17]). If k > ¯̀
crit(s), the Multibridging algorithm

correctly assembles s from supp(Sk).

Therefore, by solving (A3) for sufficiently large k, we also
solve (A1). As we will discuss in the subsequent sections, aiming
to reconstruct the support of the spectrum of s has several
advantages with respect to reconstructing the complete spectrum.
Moreover, as we describe in Appendix VII-A, the difference
between `crit(s) and ¯̀

crit(s) is a technicality, and in many
practical settings `crit(s) = ¯̀

crit(s). Therefore, in these cases,
all three problems are equivalent.

A. Adversarial Error Model

In this work, we will study the problem of error correction
of sequencing data by viewing it as the spectrum reconstruction
problem. We will build upon the ideas from [23], and consider
this problem under an adversarial error model. Given that ac-
tual sequencing noise profiles are complex (non-i.i.d., sequence-
dependent, bursty) and technology-dependent, such an adversarial
model is intended to prevent the development of techniques that
are tied to a specific probabilistic model. In Section IV, we will
evaluate the techniques developed under the adversarial error
model on a probabilistic error setting, and show that they still
provide powerful error correction techniques.

The adversarial error model herein proposed can be seen as
a generalization of the model considered in [23]. Motivated by
the fact that sequencing technologies usually provide a quality
score for each base that is read (which could be thresholded into
“good” and “bad” bases), and in order to simplify the problem, we
will consider an erasure model. The reads in R will be length-
L sequences from the alphabet Σ′ = {A,G,C,T, ε}, where ε
corresponds to an erasure. Thus, a read starting at position i from
s can be written as ri = (ri[0], ..., ri[L−1]), where either ri[j] =
s[i+j] or ri[j] = ε, for 1 ≤ i ≤ G and 0 ≤ j ≤ L−1. Notice that
an erasure is distinct from a deletion (which is more commonly
studied in the context of sequencing data) since the location of
an erasure is known due to the symbol ε.

In [23], we focused on the L-spectrum read model, or the
dense-read model. More precisely, R contained exactly one
length-L read from every position in s, and these reads were
corrupted by erasures in an adversarial manner. For a fixed pa-
rameter D, the adversarial erasure model in [23] was constrained
as follows:
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(a’) There are at most D erasures per read.
(b’) Each base s[t] is erased at most D times across all reads.

While the simplicity of this model made it analytically
tractable, the assumption of an even coverage depth across the
whole sequence is unrealistic. Hence in this work we move away
from this dense-read model and instead allow R to be a set
of N reads with arbitrary starting positions in s, with the only
constraint being that there is at least one read starting in every
W -length window2. Thus, if we let RWτ be the set of reads with
starting positions in s[τ ], s[τ + 1], ..., s[τ + W − 1] (RWτ is not
known by the assembler), we have |RWτ | ≥ 1 for τ = 1, 2, ..., G.
While constraint (a’) above translates to this general model in a
straightforward manner, we need a new way to redefine constraint
(b’). Hence we will define an additional parameter p ∈ (0, 1) (the
erasure rate) and require that the erasures satisfy the following
constraints:
(a) There are at most pL erasures per read.
(b) Each base s[t] is erased in at most a fraction p of the reads

in RWτ , for t− L < τ ≤ t−W + 1.
Notice that if t − L < τ ≤ t − W + 1, all reads in RWτ
cover s[t] and (b) is well defined. For the L-spectrum read model
from [23], the constraints in (a) and (b) reduce to (a’) and (b’)
for W = L and p = D/L. We point out that although the

s
W

R
RW

⌧

𝜏

≤ pL errors

≤ p        errors
��RW

⌧

��

Fig. 4: Illustration of adversarial model constraints given by (a) and (b).

read error model is adversarial, the constraints imposed mimic
a probabilistic error process, where bases are erased with some
probability p. Therefore, if one assumes a standard probabilistic
model where reads are sampled independently and uniformly at
random from the genome and each base is erased independently
with probability p, this adversarial model can be shown to hold
with high probability as N →∞ for a fixed W .

B. Maximum Reconstructable Support

We will focus on studying the support reconstruction problem
under the adversarial model given by (a) and (b). Thus we are
interested in assembling the support of the k-spectrum from the
set of erased reads R, for k as large as possible. As DNA
sequences tend to be highly repetitive and present patterns that are
difficult to model, we will once again take a worst-case approach
by considering a minimax formulation of (A3). Let R(s, p,W )
be the set of all possible sets of reads R from s with erasures
satisfying the adversarial constraints (a) and (b). We will write
R ⇒ supp(Sk) if the set of reads R implies supp(Sk), in
the sense that supp(Sk) is the only possible support of the k-
spectrum that is consistent with R under the error model in (a)

2This is natural in the context of the standard Lander-Waterman probabilistic
model for sequencing, where a number of reads N = αNLW ≈ αG

L
log G

ε
implies the existence of at least one read starting in every window of length L/α
with probability 1− ε. As practical values of α may be in the range 5 to 10, W
can be thought of as a relatively small fraction of L.

and (b). We are then interested in characterizing the maximum
reconstructable support

k?(p,W ) = min
s, R⊂R(s,p,W )

max {k : R ⇒ supp(Sk)} . (1)

In words, k?(p,W ) is the largest k whose spectrum can be
unambigously reconstructed for any sequence s from adversar-
ially corrupted set of reads. Intuitively, characterizing k?(p,W )
corresponds to devising an error-correction scheme that takes the
set of noisy reads R and attempts to construct a set of “clean”
reads of length k, one from each position in the genome, for k
as large as possible. The worst-case nature of (1) guarantees that
the devised error-correction scheme does not exploit potentially
unrealistic assumptions of probabilistic models.

As we describe in Appendix VII-B, the following upper and
lower bounds hold:

min (L−W + 1, d1/pe − 1) ≤ k∗(p,W ) ≤ L−W + 1. (2)

In particular, we point out that the lower bound d1/pe − 1
can be understood as representing the k-mer count approach to
error correction. Since 1/p is the average length of an error-free
segment, one can reconstruct the (d1/pe − 1)-mer spectrum of
s by simply extracting all (d1/pe − 1)-mers of all reads, and
keeping those with no errors.

While characterizing k∗(p,W ) exactly in general is challeng-
ing, it is unclear how relevant this quantity is to the assem-
bly problem of real genomes, since considering the worst-case
sequence s can be too pessimistic. Ideally, we would like to
characterize (1) after we restrict s to be in a large set that contains
most real genomes, but is still amenable to an analytical solution.
We will show that by constraining the set of sequences s to
sequences that do not have too many long approximate repeats,
the upper bound of L−W + 1 is in fact achievable.

C. Main Result

We derive a method for estimating the k-spectrum Sk based
on a test that decides, given the set of reads R, whether a given
k-mer should be included in the reconstruction Ŝk. This allows us
to achieve the upper bound in (2) under a mild restriction on the
possible sequences s. Hence, under this restriction, the proposed
method is worst-case optimal from the point of view of obtaining
the maximum reconstructable support (1).

Motivated by the results in [23], we will use the approximate
repeat statistics in order to define this set of “allowed” sequences
in the maximum reconstructable support formulation from Sec-
tion II-B. For a set of segments U of a given length `; i.e.,
U ⊂ Σ`, we define the radius of U to be

ρ(U) = min
x∈Σ`

max
y∈U

dH(y,x), (3)

where dH(y,x) is the Hamming distance between y and x.
We will say that the segments in U are q-approximate copies
if ρ(U) ≤ q`. As illustrated in Fig. 5, if one were to plot S`(s)
as points in the metric space Σ`, the existence of several points
in close proximity, i.e., a large set U ⊂ S` with a small radius
ρ(U) implies that s has more ambiguity in terms of assembly.
To capture that, we let Vs(r, `) be the maximum number of r-
approximate length-` segments in s; i.e.,

Vs(r, `) , max {|U| : U ⊂ S`(s), ρ(U) ≤ r} . (4)
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Fig. 5: If we consider plotting S` as points in Σ`, Vs(r, `) is the maximum
number of points that can be enclosed by a ball of radius r.

This quantity was used in [23] to characterize when the set
of reads R uniquely determines Sk, but under the assumption of
dense reads; i.e., R contains one read starting at each position of
s. More precisely, it is shown that if

L > k +D · Vs(D, k + 1), (5)

where D is the error parameter in the error model in (a’) and (b’),
then R uniquely determines the full spectrum Sk (thus solving
problem (A2) for this setting). In this work, we depart from the
assumption of dense reads and use (4) instead to define our set
of genomes of interest as

G(p, L,W ) = {s : Vs(pL,L−W + 1) < 1/p} . (6)

In words, a sequence s is in G(p, L,W ) if it contains less than
1/p pL-approximate repeats of length L−W+1. As we remarked
in Section II-B, W should be thought of as a small fraction
of L, in which case requiring s ∈ G(p, L,W ) corresponds to
requiring the number of approximate repeats at a length close
to L to not exceed 1/p. As shown in Table I, by computing

Genome (s) Vs(pL,L−W + 1)

R. sphaeroides 2
S. aureus 3
A. ferrooxidans 3
E. coli 536 3
E. coli K-12 4

TABLE I: L = `crit and W = 0.15L

Vs(pL,L − W + 1) for several real genomes when L = `crit

(the required read length for assembly from noiseless reads) and
W = 0.15L, we have Vs(pL,L − W + 1) ≤ 4, which would
guarantee that s ∈ G(p, L,W ) as long as the worst-case error rate
satisfies p < 1/4. This requirement is reasonale given that current
long-read sequencing technologies have nominal error rates of
approximately 15%.

Our main result is the characterization of the maximum recov-
erable support under this restriction to “reasonable” genomes.

Theorem 3. For the adversarial erasure model in (a) and (b)
with p < 1/2, we have

k?(p,W,G) ,

min
s∈G(p,L,W ),
R⊂R(s,p,W )

max {k : R ⇒ supp(Sk)} = L−W + 1.

(7)

The result in Theorem 3 states that, as long as s ∈ G, a set of
noisy reads satisfying (a) and (b) always allows the reconstruction
of the (L−W + 1)-spectrum. In other words, even if the noise
on the reads is adversarial and the sequence is the worst case in
the set G, one can still unambiguously obtain a set of cleaned

up reads of length L −W + 1. Therefore, the effective loss in
read length incurred by read errors is W in the worst-case and,
when W is a relatively small fraction of L (which is a natural
assumption when sequencing at a reasonable coverage, as we
argued before), this result supports the message that noisy reads
are essentially as good as noiseless reads, first observed in [20].

To prove this result we will describe a technique to construct
an estimate of the k-spectrum Ŝk from the set of noisy reads R.
In the spirit of the approach in [20], this construction can be seen
as a typicality-like test, which, nonetheless, does not assume a
specific probability distribution for the errors or for the underlying
sequence s.

III. A WORST-CASE TYPICALITY TEST

In order to prove Theorem 3, we will introduce a test that
decides whether a k-mer is a true k-mer (i.e., a k-mer that appears
in s) by clustering similar reads satisfying certain properties. In
the flavor of [20], we can view this procedure as a typicality test,
where we check for a given k-mer x, whether there are reads in
R that look like typical outputs of passing x through the error
channel. However, since we are dealing with the adversarial error
model described in Section II-A, the test can be thought of as a
worst-case typicality test.

Definition 1. Given the set of reads R, a k-mer x ∈ Σk

is (Dh, Dv,m)-typical if we can find k-mers x1, ...,xm from
distinct reads in R satisfying
• consistency: xi[t] = ε or xi[t] = x[t], for i = 1, ...,m

and t = 1, ..., k
• horizontal constraint: dH(x,xi) ≤ Dh for i = 1, ...,m
• vertical constraint: |{i : xi[t] = ε}| ≤ Dv , for t = 1, ..., k

Fig. 6: The 7-mer TCGGCGTA is (3, 2, 5)-typical.

In Fig. 6, we provide an example of a typical k-mer. Intuitively,
we would like to choose the parameters Dh (horizontal error rate),
Dv (vertical error rate), and m to generate a test that is guaranteed
to work under the worst-case model given by (a) and (b). The
main property that makes this notion of typicality powerful is
that, depending on the choice of parameters and the approximate
repeat statistics of s given by Vs(·, ·), it has a no-false-positive
guarantee. This is expressed in the following theorem.

Theorem 4. Given a set of readsR, if x is a (Dh, Dv,m)-typical
k-mer and DvVs(Dh, k) < m, then x ∈ Sk.

Proof. Consider a (Dh, Dv,m)-typical k-mer x and the k-mers
x1, ...,xm satisfying the properties in Definition 1. Each of these
k-mers (with erasures) must have originated from some k-mer
in s. Let S = {skt1 , ..., sktM } ⊂ Sk be the length-k segments
in s from which at least one of x1, ...,xm originated. Since
dH(x,xi) ≤ Dh for for i = 1, ...,m, we have dH(x, ski ) ≤ Dh

for i = 1, ...,M . This implies that ρ({skt1 , ..., sktM }) ≤ Dh and
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hence M ≤ Vs(Dh, k). We will show that we must have x = skti
for some i ∈ {1, ...,M}.

Suppose by contradiction that x 6= skti for i = 1, ...,m. Then
each skti must differ from x in at least one position. Now partition
the k-mers U = {x1, ...,xm} into U1, ...,UM according to which
length-k block skti they originated from. All reads from Ui must
have an erasure in the position where x and skti differ. Since
x is a (Dh, Dv,m)-typical k-mer, from the third property in
Definition 1, we must have |Ui| ≤ Dv . Since this holds for
i = 1, ...,M , we have

|U| =
M∑

i=1

|Ui| ≤MDv ≤ DvVs(Dh, k) < m,

which is a contradiction as |U| = m.

The requirement that DvVs(Dh, k) < m may be intuitively
understood if we rewrite it as Dv/m < 1/Vs(Dh, k). For many
real genomes, as shown in Table I, provided that k ≈ `crit,
this is a small number often no larger than 4. Since Dv/m
can be thought of as the error rate, we are essentially requiring
the error rate to be the reciprocal of the maximum number of
approximate repeats. We say that Theorem 4 implies a no-false-
positive property because of the following direct consequence.

Corollary 1. If we have DvVs(Dh, k) < m, then the k-spectrum
assembler given by

Ŝk(Dh, Dv,m) , {x ∈ Σk : x is (Dh, Dv,m)-typical} (8)

satisfies Ŝk(Dh, Dv, n) ⊂ Sk.

Furthermore, we point out that Theorem 4 and Corollary 1
are completely independent of the erasure model used. The only
constraint, namely that DvVs(Dh, k) < m, is just a function of
the test parameters and of the sequence repeat statistics. Hence,
this result still holds in a probabilistic erasure model, for instance.
This fact will be explored later on, in Section IV.

Notice that through this typicality approach we cannot char-
acterize the multiplicity of each element in the multiset Sk
(i.e., Ŝk is a set, not a multiset). Hence, we can only hope for
Ŝk = supp(Sk).

Theorem 5. For any sequence s ∈ G(p, L,W ) and set of reads
R satisfying the adversarial model in Section II-A,

⋃

m≥1

Ŝk(pL, pm,m) = supp(Sk). (9)

for any k ≤ L−W + 1.

Proof. First we notice that s ∈ G(p, L,W ) implies pm ·
Vs(pL, k) < m for every m ≥ 1. Hence, from Corollary 1,
Ŝk(pL, pm,m) ⊂ supp(Sk) for m ≥ 1. Conversely, consider
an arbitrary k-mer ski from the sequence s. Now if we set
τ = i − W + 1, we will have t − L < τ ≤ t − W + 1
for every t ∈ [i : i + k − 1]. Hence if we let m = |RWτ |,
among the reads in RWτ we have at most pm erasures for
each base in ski (see Fig. 7), implying that ski is (pL, pm,m)-
typical for m ≥ 1, and skt ∈ Ŝk(pL, pm,m). We conclude that
supp(Sk) ⊂ ∪m≥1Ŝk(pL, pm,m).

Theorem 3 now follows straighforwardly.

Proof of Theorem 3. The lower bound (achievability) to
k∗(p,W,G) follows from Theorem 5. Since for every sequence

s
W

RW
⌧

k𝜏 sk
ii

Fig. 7: Due to the k-mers in the dashed rectangle, the k-mer ski must be
(pL, pm,m)-typical for m = |RWτ |.

s ∈ G(p, L,W ) andR ∈ R, (9) provides a way to unambiguously
reconstruct supp(Sk) for k ≤ L − W + 1, we must have
L−W + 1 ≤ k?(p,W,G). By noticing that the sequence used to
derive the upper bound k?(p,W,G) ≤ L−W + 1 (see Appendix
VII-B) is in G(p, L,W ) when p < 1/2, Theorem 3 follows.

Intuitively, reducing W corresponds to making the adversarial
model in (a) and (b) closer to a probabilistic i.i.d. model. Hence,
Theorem 5 suggests that in a probabilistic model one should be
able to reconstruct supp(SL−W+1) where L−W+1 ≈ L, as long
as p < 1/Vs(pL,L−W+1). Since we expect Vs(pL,L−W+1)
to be a small number for real genomes, this result has a similar
message to the one in [20]: up to a certain value of the error rate
p, a typicality-type test can convert noisy reads into noiseless
reads that are almost as long as the original reads.

IV. ANALYSIS UNDER A PROBABILISTIC MODEL

While the techniques in Section III were introduced with the
goal of characterizing the maximum reconstructable support of
the spectrum in the worst-case setting described in Section II-B,
it can be seen as a general test to identify true k-mers from
a set of noisy reads R under any error model. In particular,
an important observation is that the no-false-positive property
stated in Corollary 1 is independent of the error model described
in Section II-A and holds under any arbitrary erasure model.
When the conditions (a) and (b) in Section II-A are not satisfied
everywhere, the spectrum reconstruction in (9) may fail to contain
the entire support but will still satisfy ∪m≥1Ŝk(pL, pm,m) ⊂
supp(Sk(s)). Hence it can be seen as a technique to generate an
(error-free) subset of the k-spectrum. It is then natural to consider
the performance of this error-correction scheme of the approach
introduced in Section III when applied to a probabilistic setting
where both the read locations and the erasures are random.

For concreteness, let us consider the standard model where
N reads are sampled independently and uniformly at random
from the genome. Suppose the read errors are erasures that
occur independently with probability p. Due to Theorem 4,
and motivated by the spectrum assembler of Corollary 1, a
natural approach is to attempt to reconstruct the k-spectrum by
considering

⋃

m≥1

Ŝk(qL, qm,m) ⊂ supp(Sk(s)). (10)

The parameter q can be thought of as a fraction q > p that we do
not expect the rate of erasures to exceed. As long as q·Vs(qk, k) <
1 (which is independent of the error model), the above spectrum
reconstruction approach is guaranteed by Corollary 1 to generate
a subset of supp(Sk). In fact, one can do better by noticing that,
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Fig. 8: Sufficiency curves when erasures at a rate p are allowed on the assembled sequence. Reads are assumed to be sampled independently and uniformly at random,
and erasures occur independently with probability p.

for k′ > k, Vs(qk, k) ≤ Vs(qk
′, k′), and q · Vs(qk′, k′) < 1.

Therefore, one can consider the set

R̃k,q ,
⋃

k′≥k

⋃

m≥1

Ŝk(qk′, qm,m). (11)

of cleaned up k′-mers for different values of k′ ≥ k. As our
goal is to assemble s, we can view the (random) set R̃k,q as
generating a set of error-free reads of variable lengths. The
problem of genome assembly from variable-length error-free
reads was studied in [17, 24]. Sufficient conditions for these
algorithms to succeed were derived in [17] in terms of “bridging”
of repeats. Given the probabilistic model being considered, one
can compute the probability that R̃k,q satisfies these conditions,
which would in turn guarantee that perfect assembly can be
achieved. By repeating this process for different values of the
erasure probability p, we obtain the curves in Fig. 3.

We notice that for both genomes considered, these sufficiency
curves are not very far from the error-free lower bound, partic-
ularly in terms of the read length required. The coverage depth
requirement for this scheme, however, is larger than the Lander-
Waterman coverage that is sufficient in the error-free case. Part
of the reason for this discrepancy is our strict objective of perfect
assembly. This requires the set of error-corrected reads R̃k,q to
cover the entire genome, which in turn requires the original set of
reads R to cover the entire genome multiple times. Alternatively,
one can consider relaxing this requirement, and allowing the final
assembly to contain erasures at a rate no larger then p. One can
then modify the scheme to utilize, in addition to the error-free
reads in R̃k,q , the original reads in R that did not contribute to
any of the typical k′-mers included in R̃k,q to “fill in” the gaps of
coverage. Such an approach, although not technically achieving
the original goal of perect assembly, has milder coverage depth
requirements, as shown in Fig. 8. In fact, one can show that the
sufficiency curves obtained under this modified setting have a
horizontal asymptote at 1 (i.e., the Lander-Waterman coverage)
matching the lower bound.

V. PRACTICAL CONSIDERATIONS

The typicality-based error-correction scheme described in Sec-
tion III is theoretical in nature, and its main goal is to allow us
to study fundamental limits of error correction, illustrated by the
curves in Fig. 8. As the error correction of sequencing data is a
problem of significant practical importance, several remarks on

the limitations of the model and the connections with practical
approaches are in order.

Real sequencing platforms generate reads that are suscepti-
ble to substitution errors, insertions and deletions. Therefore,
the erasure model considered in this paper is restrictive and
should be understood as a first step towards considering the
more challenging case of general error models. We point out
that the typicality-based nature of the test considered makes
it straightforward to generalize our error correction scheme. In
particular, Definition 1 would regard a k-mer x as (Dh, Dv,m)-
typical if we can find segments x1, ...,xm (not necessarily of
length k) such that dE(x,xi) ≤ Dh, where dE(·, ·) refers to the
edit distance, and these segments can be aligned to x so that each
base in x is supported by at least m−Dv . However, besides the
computational obstacles imposed by such a definition, the no-
false-positive property of Corollary 1 does not hold under this
generalization, and new techniques must be developed in order
to carry out an analysis similar to the one in this paper.

The error correction scheme proposed in Section III does not
lend itself easily to a computationally tractable approach. In fact,
a naive implementation would require one to consider all 4k

possible k-mers and, for each one, attempt to align reads to it
to verify the typicality conditions, leading to a O(4kN(L− k)k)
running time. However, the idea of considering one k-mer at a
time is clearly not practical and one should use the k-mers in the
reads themselves as potential typical typical k-mers. Notice that if
there are m k-mers x1, ...,xm satisfying dH(x,xi) ≤ Dh for i =
1, ...,m, it follows that dH(xi,xj) ≤ 2Dh for i, j ∈ {1, ...,m}.
Therefore, a practical proxy for identifying typical k-mers is to
first cluster k-mers extracted from the reads to identify sets of
k-mers with pairwise distance at most 2Dh and then only test
the typicality of k-mers that are well supported by the cluster (or
near the cluster center). The computational bottleneck to such an
approach would lie in the identification of pairs of k-mers within
a fixed distance of each other. This would in principle require
a O(N2(L − k)2k) running time, which is still impractical, but
hashing-based techniques (such as the locality-sensitive hash used
in [14]) can be used to speed up this process at the expense of
a small loss in accuracy. We also point out that, when viewed in
this way, the approach proposed in this paper resembles cluster-
based error correction schemes such as those studied in [6, 7],
except that it uses the worst-case typicality test in Section III
instead of a test based on a statistical model for the sequence
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and the error process to infer the set of cleaned-up k-mers.

VI. CONCLUDING REMARKS

In this work, we investigate the problem of genome assembly
without making probabilistic assumptions about the underlying
sequence and the noise process. Adopting an adversarial error
model, we propose a typicality-based algorithm for correcting
read errors which clusters k-mers with a “worst-case typical”
error pattern and then uses these clusters to infer error-free reads
of (potentially) shorter length. Under the worst-case formulation
considered, this approach is proved to be optimal in the sense that
it recovers the maximum reconstructable support of the spectrum
for the target sequence.

By leveraging our worst-case analysis for fixed error-rates, we
compute conditions on read length and coverage depth that are
sufficient for perfect assembly of several real genomes under a
stochastic error model. When evaluated for real genomes, we
observe that the information-theoretic requirements for perfect
assembly do not vary significantly due to the introduction of
read errors. More specifically, the critical read length required
for perfect assembly in the presence of read errors, a parameter
dictated by available technology, is approximately the same as
that required for perfect assembly from error-free reads.

While this paper focused on reads with erasures, a direction for
future work is to extend the techniques to the more general case
of substitution errors and indels. We point out that the typicality-
based nature of the test considered makes it straightforward to
generalize our error correction scheme. However, when errors are
no longer erasures, the no-false-positive property of Corollary 1
does not hold, and thus the error correction scheme can produce
false reads. As a result, a performance analysis of standard as-
sembly algorithms such as [17, 22], which are designed for error-
free reads, on the resulting set of “almost” error-corrected reads is
highly non-trivial. Nevertheless, we conjecture that similar results
will hold for more general error modes.

VII. APPENDIX

A. From spectrum reconstruction to perfect assembly

In this section, we describe in detail the critical lengths
`crit(s) and ¯̀

crit(s), which guarantee that, from Sk and supp(Sk)
respectively, one can reconstruct the complete sequence s.

A repeat of length ` in s is a subsequence appearing twice
at some positions t1 and t2 (so s`t1 = s`t2 ) that is maximal; i.e.,
s[t1−1] 6= s[t2−1] and s[t1 +`] 6= s[t2 +`]. Two pairs of repeats
s`a1 , s

`
a2 and skb1 , s

k
b2

are interleaved if a1 < b1 < a2 < b2. Due
to the circular DNA model, since a subsequence s`t can also be
written as s`t+mG for any integer m, we additionally require that
b2 − a1 < G. The length of a pair of interleaved repeats s`a1 , s

`
a2

and skb1 , s
k
b2

is defined to be min(`, k). We let `inter(s) be the
length of the longest pair of interleaved repeats in s.

A triple repeat of length ` in s is a subsequence appearing three
times at some positions t1 < t2 < t3 (so s`t1 = s`t2 = s`t3 ) that is
maximal; i.e., s[t1 − 1], s[t2 − 1] and s[t3 − 1] are not all equal
and s[t1 + `], s[t2 + `] and s[t3 + `] are not all equal. Notice
that, for the circular DNA model we consider, we can define
three segments A = st2−t1t1 , B = st3−t2t2 and C = sG+t3−t1

t3 . We
will say that a triple repeat is transpose-invariant if A, B and
C are not all distinct. The reason for this terminology is that,
if A = B for instance, the circular sequences defined by ABC

and ACB are the same. We will let `triple(s) be the length of
the longest triple repeat in s that is not transpose-invariant, and
¯̀
triple(s) be the length of the longest triple repeat in s. Clearly,

¯̀
triple(s) ≥ `triple(s).

Finally, we define the two critical read lengths as

`crit(s) = max [`inter(s), `triple(s)]
¯̀
crit(s) = max

[
`inter(s), ¯̀

triple(s)
]
.

The first critical read length provides the guarantee for when s
can be unambiguously assembled from the complete k-spectrum
Sk. More precisely, results in [18, 19] imply the following:

Theorem 1. If k > `crit(s), then s is the unique sequence with
k-spectrum Sk(s). Conversely, if k ≤ `crit(s), there exists a
sequence s′ 6= s for which Sk(s) = Sk(s′).

Similarly, the second critical read length provides a guarantee
of reconstruction of s when we have the support of the k-
spectrum.

Theorem 2 [17]. If k > ¯̀
crit(s), the Multibridging algorithm

correctly assembles s from supp(Sk).

We point out that the distinction between these two notions of
the critical read length is often not very explicit in the literature.

B. Simple bounds on k∗(p,W )

A simple lower bound for k?(p,W ) can be obtained by
noticing that if we look at d1/pe − 1 consecutive positions in s
and d1/pe−1 ≤ L−W +1, (b) guarantees that there will be one
read where none of these positions is erased. To see this, consider
some segment sd1/pe−1

i and the length-W window to its left, and
suppose by contradiction that all reads (say m) starting in this
window have at least one erasure in s

d1/pe−1
i . By the pigeonhole

principle, at least one of the symbols in s
d1/pe−1
i is erased at least

m
d1/pe−1 > pm times, which contradicts (b). Hence, we always
have R ⇒ supp(Sd1/pe−1), and

min (L−W + 1, d1/pe − 1) ≤ k∗(p,W ).

On the other hand, the example in Fig. 9 shows that L−W + 1
is an upper bound. In the sequence s in Fig. 9, there are two

s
L −W

W – 1

Fig. 9: Sequence s for which supp(SL−W+2) cannot be reconstructed unam-
biguously.

segments (in blue) which are identical except at two locations.
If the gap between these two locations has length L − W , it
is not difficult to see that in order to unambiguously reconstruct
supp(SL−W+2), we would need at least one read that covers both
of the distiguishing bases. But this is equivalent to requiring a
read to have a starting position in a window of length W − 1.
Since in our model we just require that RWτ 6= ∅ it is possible
that no read will cover both of these positions. This implies that

k∗(p,W ) ≤ L−W + 1.

We point out that while the example above may seem contrived
at first, long nearly-exact repeats that only differ in a few spread
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out positions are common genomic patterns, and indeed represent
a bottleneck for error correction in practice.
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