
Fundamental Limits of Multi-Sample
Flow Graph Decomposition

Kayvon Mazooji∗, Sreeram Kannan†, William Stafford Noble† and Ilan Shomorony∗
∗University of Illinois at Urbana-Champaign

†University of Washington

Abstract— The problem of decomposing a graph flow into a
small set of paths has a wide range of applications, including tran-
scriptome assembly and routing in data networks. A standard
formulation is the sparsest flow decomposition problem, which
is known to be NP-hard. In this work, we consider a multi-
sample variant of this problem, motivated by the problem of
identifying and quantifying proteoforms from mass spectrometry
data, where multiple views of the graph can be obtained from
multiple biological samples. We derive necessary conditions for
the set of samples to unambiguously determine the ground truth
set of paths, and we design an algorithm with matching sufficient
conditions for a large class of problem instances, making our
algorithm information optimal for this class of problem instances.
The necessary conditions, combined with a probabilistic model
for sample generation, yield a characterization of the number
of samples needed for unambiguous recovery of the underlying
paths. We analyze the algorithm’s performance on flow data
simulated on peptide graphs from real mass spectrometry data.

I. INTRODUCTION

Twenty types of amino acids make up all the proteins found
in the human body, and each protein is a sequence of 50–5000
amino acids. One method of identifying proteins and quantify-
ing their abundances in a complex biological sample is through
tandem mass spectrometry, where substrings (called peptides)
of the proteins present are observed with varying abundances,
and the proteins and their abundances are reconstructed from
these peptides [1]. In addition to the mass spectrometry data,
this process requires a database of proteins that are known
to exist in the given sample. For example, for analysis of a
human sample, we would use a database containing all proteins
encoded in the human genome. Unfortunately, any such protein
database is necessarily incomplete, because there inevitably
exist protein variants in the sample that are not present in
the database. We use the term proteoform to refer to variants
of a protein that arise due to variation in how the protein
is created (splice isoforms) and variants that arise after the
protein is created (post-translational modifications) [2]. Using
the observed peptides and their abundances in a sample, a
directed graph can be created where peptides are nodes, and
directed edges exist between adjacent peptides in known hu-
man proteins. If the abundances of the peptides are measured
accurately enough, then a flow will form on the graph, and we
can reconstruct the proteoforms and their abundances in the
sample by decomposing the flow on the graph into weighted
paths (see Figure 1). To aid the situation, multiple samples
from the same tissue can be obtained, which contain the same
set of proteoforms, providing us with multiple distinct flows

on the same graph. Motivated by this, in this work we consider
the problem of inferring the true set of paths that form multiple
flows on a directed graph.

The problem of recovering the set of paths that produce an
observed flow in a graph also has applications in the analysis
of transcriptomic (i.e., gene expression) data [3–5], cancer
genomic assembly [6], metagenomic assembly [7], virus quasi-
species assembly [8], and routing in data networks [9]. A
standard combinatorial optimization formulation of this prob-
lem is the sparsest flow decomposition problem [10]. In this
problem, one observes a directed acyclic graph G = (V,E)
and a flow w : E → R+ on its edges and seeks to recover the
smallest number of paths with respective weights that explain
the flow w (i.e., their weighted sum equals the flow). There
are several difficulties with this approach. First, sparsest flow
decomposition is in general NP-hard [9, 11]. Second, even if
we could solve this problem efficiently, there is no guarantee
that the recovered set of paths matches the true set of paths in
a practical setting such as with RNA-seq data [3–5]. Finally,
it is not clear how to define the sparsest flow decomposition
when the flow conservation property does not hold exactly due
to the addition of noise in the observed edge weights.

In this paper we consider an alternative information-
theoretic formulation of the flow graph decomposition prob-
lem. For a known graph G, we assume the existence of an
unknown set of paths P , where each path begins at a source
and ends at a sink node in G. Motivated by the problem
of identifying and quantifying the abundance of proteoforms
from mass spectrometry data, where multiple samples can be
obtained and are expected to contain the same set of prote-
oforms, we consider a multi-sample version of the problem.
More precisely, we observe T flows on G, all of which are
consistent with the set of paths P . Each flow is produced
by assigning a non-negative weight to each path in P and
assigning edge e a weight equal to the sum of the weights of
the paths in P that pass through it (see Figure 1). We refer
to each set of edge weight assignments as a sample. Given T
samples of G, our goal is to recover the paths in P and their
weights for each sample.

Unlike in the sparsest flow decomposition problem, in our
formulation we can ask an information-theoretic question:
When is there enough information in the T samples to allow
P to be unambiguously recovered? To answer this question,
we establish a necessary condition on the samples to guarantee
that the paths in P must be present in any recovery P̂ consis-

Fig. 1. Example of a peptide graph G from real mass spectrometry data. Each
peptide node is associated with an amino acid sequence. In this example, the
sparsest flow decomposition of G is not equal to the true set of paths P .

tent with the data. We then establish a sufficient condition on
the samples and the graph G for correctly reconstructing all
the paths in P using an algorithm we design. The necessary
condition we derive is equivalent to the sufficient condition
for a large class of (G,P), making our algorithm information-
optimal for this class of (G,P). Under the assumption that the
weights of paths in P are i.i.d. uniformly distributed, we derive
an upper bound on the number of necessary and sufficient
samples for this class of (G,P). We then test the algorithm’s
performance on flow data simulated on real peptide graphs
obtained from mass spectrometry experiments.

II. PRELIMINARIES AND PROBLEM SETTING

Following standard convention, we use [n] = {1, 2, . . . , n}.
We let G = (V,E) denote a directed acyclic graph with nodes
V and edges E. An edge e that starts at node u and ends at
node v is denoted by (u, v). We let vin(e) and vout(e) be the
start and end nodes of e. For v ∈ V , an in-edge is an edge
that ends at v, and an out-edge is an edge that begins at v.
The set of in-edges for v is denoted by Ein(v), and the set of
out-edges for v is denoted by Eout(v). The in-degree of v is
equal to |Ein(v)| and the out-degree is equal to |Eout(v)|. An
in-edge of v begins at an in-node of v, and an out-edge of v
ends at an out-node of v. The set of in-nodes of v is denoted
by Vin(v), and the set of out-nodes of v is denoted by Vout(v).
A source in G is a node with in-degree 0, and a sink in G
is a node with out-degree 0. A path is a sequence of nodes
(v1, v2, ..., vn) where (vi, vi+1) is an edge for i ∈ [n− 1]. A
subpath of a path p is a contiguous subsequence of nodes in
p. With slight abuse of notation, for an edge e ∈ E and path
p ∈ P , we write e ∈ p if e = (vi, vi+1) for adjacent nodes
vi and vi+1 in p. A flow on G is a mapping w : E → R+ so
that, ∀ v ∈ V ,

∑
e∈Ein(v)

w(e) =
∑

e∈Eout(v)
w(e).

Let P denote the unknown set of paths in G. We observe
T samples, each of which is a flow wt, t = 1, . . . , T . We
denote the set of samples by T . Each wt must be consistent
with the set of paths P ; i.e., it must be obtained by assigning
a non-negative abundance αp to each path p ∈ P , and letting
wt(e) =

∑
p:e∈p αp. For a set of edges E′, we let wt(E

′) =∑
e∈E′ wt(e). For a subpath (v1, . . . , vk) of a path in P , we

let wt((v1, . . . , vk)) denote the sum of the weights of all paths
in P that include (v1, . . . , vk) as a subpath.

Given the set of observed flows T , our goal is to recover
the set of paths P . Rather than considering a combinatorial
optimization formulation such as the sparsest flow decompo-
sition, we instead ask an information-theoretic question: When

does the set of samples T contain enough information for the
unambiguous recovery of P ? We formalize this as follows.

Definition 1. A set of samples T for G reveals P if any set
of paths P ′ consistent with T must satisfy P ⊂ P ′.

Our goal is to find an algorithm that reconstructs P and the
corresponding path weights for all samples from T whenever
T reveals P . We are also interested in understanding how
large T should be for it to reveal P . To study that question,
we assume that the abundances wt(p) are i.i.d. U(0, 1) random
variables, for all p ∈ P , and we define:

Definition 2. The sample complexity T ∗(ϵ) is the minimum
number of samples needed to guarantee that T reveals P with
probability at least 1− ϵ.

The algorithms and theory discussed in the next sections
will rely on the notion of decomposing a node v ∈ V given
T samples. A decomposition of v is the replacement of v in
G by a set V ′ of nodes such that:

1) each v′ ∈ V ′ has in-degree one and out-degree one, and
has one in-node that is an in-node of v, and has one
out-node that is an out-node of v;

2) the assignment of edge weights to each new edge in
each sample is such that the modified graph still forms
a flow for each sample.

In order to keep track of original paths in G when we decom-
pose a node v into V ′, we need to define a function ℓ where
ℓ(v′) = v for all v′ ∈ V ′. For a path p = (v1, v2, . . . , vn) in
G, we let ℓ(p) = (ℓ(v1), ℓ(v2), . . . , ℓ(vn)).

III. MAIN RESULTS

Our first main result states that a simple algorithm for
recovering P is information-optimal for a broad class of
(G,P). To describe this class of (G,P), we will need the
notion of a “good” node, which we define at the end of this
section (Definition 3).

Theorem 1. Suppose (G,P) is such that all nodes are good.
Then the Topological Decomposition algorithm (Algorithm 1)
outputs P̂ = P with correct path weights for all samples if
and only if the set of samples T reveals P .

Theorem 1 implies that topologically decomposing nodes in
G in the sparsest possible way (Algorithm 1) is information-
optimal for the broad class of (G,P) such that all nodes are
good. This is proved in Section IV by establishing necessary
and sufficient conditions for T to reveal P for the class of
(G,P) where all nodes are good.

Our second main result is an an upper bound on T ∗(ϵ) for
the class of (G,P) where all nodes are good.

Theorem 2. Suppose (G,P) is such that all nodes are good.
Let k be the maximum number of paths in P passing through
any given node in G. Then

ln(1/ϵ)

− ln(1− 1
k!)
≤ T ∗(ϵ) ≤

ln
(

|V |k
ϵ

)
− ln

(
1− 1

k!

) . (1)

Algorithm 1: Topological Decomposition
Data: G = (V,E)
Result: P̂ , {ŵt : t ∈ [T]}

1 Initiate a queue Q;
2 Add all nodes v ∈ V with |Ein(v)| > 1 to Q in

topological order;
3 while Q ̸= ∅ do
4 v ← first node in Q;
5 remove v from Q;
6 decompose v into the smallest possible set V ′ ;
7 for u ∈ Vout(v

′) for v′ ∈ V ′ do
8 if Ein(u) > 1 and u is not already in Q then
9 add u to the front of Q;

10 P̂ ← the set of (ℓ(v1), ℓ(v2), ..., ℓ(vk)) for all paths
p = (v1, v2, ..., vk) in decomposed graph that start at
a source and end at a sink;

11 for p in P̂ do
12 ŵt(p)← weight of last edge in p in decomposed

graph for sample t ;

Theorem 2 characterizes the sample complexity up to a log
factor. We also point out that −1/ ln(1 − 1/k!) ∼ k!. This
shows that if the number of paths that pass through a single
node is not too large, then the number of samples needed is
reasonable for (G,P) where all nodes are good.

In order to formally define when a node is good, we first
need to define, given G, P , and a node v, the decomposed
graph before v, denoted by G′

v . The graph G′
v is obtained

by decomposing every node before v in topological order in
such a way that all paths in P are preserved and all nodes
before v have in-degree at most one. This is illustrated in
Figure 2(b). Observe that for each node u that comes before
v in G′

v in topological order, there is only one path that starts
at a source in G′

v and ends at u. We denote this unique path
by G′

v[: u]. Any path G′
v[: u] for u before v in topological

order is a subpath of a path in P . Now, for a node v, we
define a bipartite graph Bv as follows. The left nodes of Bv

are the in-nodes of v in G′
v and the right nodes of Bv are the

out-nodes of v in G′
v , and they are connected according to the

paths P , as illustrated in Figure 3(c,d).

Definition 3. A node v is good if Bv has no cycles.

Notice that, if a node is not good, then the presence of
a cycle in Bv allows an amount of flow ϵ to be added and
subtracted in an alternating manner along the cycle while
preserving flow conservation (Figure 2(e)). By focusing on
(G,P) with only good nodes, we avoid this ambiguity and
prove that Algorithm 1 is successful if T reveals P .

IV. PROOF OF THEOREM 1

We prove Theorem 1 by first establishing (in Lemma 1)
a necessary condition for T to reveal P that holds for any
(G,P). This condition is based on an application of the

<latexit sha1_base64="cTdfB6rBEGi7f9gUfQw8nE2aHN4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdemFkdnYzM0tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh/cxvjlBpHstHM07Qj2hf8pAzaqxUG3WLJbfszkFWiZeREmSodotfnV7M0gilYYJq3fbcxPgTqgxnAqeFTqoxoWxI+9i2VNIItT+ZHzolZ1bpkTBWtqQhc/X3xIRGWo+jwHZG1Az0sjcT//PaqQlv/QmXSWpQssWiMBXExGT2NelxhcyIsSWUKW5vJWxAFWXGZlOwIXjLL6+SxkXZuy5f1q5KlbssjjycwCmcgwc3UIEHqEIdGCA8wyu8OU/Oi/PufCxac042cwx/4Hz+AOXNjQI=</latexit>v

<latexit sha1_base64="cTdfB6rBEGi7f9gUfQw8nE2aHN4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdemFkdnYzM0tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh/cxvjlBpHstHM07Qj2hf8pAzaqxUG3WLJbfszkFWiZeREmSodotfnV7M0gilYYJq3fbcxPgTqgxnAqeFTqoxoWxI+9i2VNIItT+ZHzolZ1bpkTBWtqQhc/X3xIRGWo+jwHZG1Az0sjcT//PaqQlv/QmXSWpQssWiMBXExGT2NelxhcyIsSWUKW5vJWxAFWXGZlOwIXjLL6+SxkXZuy5f1q5KlbssjjycwCmcgwc3UIEHqEIdGCA8wyu8OU/Oi/PufCxac042cwx/4Hz+AOXNjQI=</latexit>v

<latexit sha1_base64="cTdfB6rBEGi7f9gUfQw8nE2aHN4=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdemFkdnYzM0tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh/cxvjlBpHstHM07Qj2hf8pAzaqxUG3WLJbfszkFWiZeREmSodotfnV7M0gilYYJq3fbcxPgTqgxnAqeFTqoxoWxI+9i2VNIItT+ZHzolZ1bpkTBWtqQhc/X3xIRGWo+jwHZG1Az0sjcT//PaqQlv/QmXSWpQssWiMBXExGT2NelxhcyIsSWUKW5vJWxAFWXGZlOwIXjLL6+SxkXZuy5f1q5KlbssjjycwCmcgwc3UIEHqEIdGCA8wyu8OU/Oi/PufCxac042cwx/4Hz+AOXNjQI=</latexit>v

<latexit sha1_base64="yOMNwiZaxiAqlVuvmzZIbCSLAcw=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBAEIeyqqMegF48RzEOSJcxOepMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1peWV1bL2wUN7e2d3ZLe/sNo1JNoU4VV7oVEQOcSahbZjm0Eg1ERBya0fB24jefQBum5IMdJRAK0pcsZpRYJz2ediAxjCvZLZX9ij8FXiRBTsooR61b+ur0FE0FSEs5MaYd+IkNM6ItoxzGxU5qICF0SPrQdlQSASbMpgeP8bFTejhW2pW0eKr+nsiIMGYkItcpiB2YeW8i/ue1UxtfhxmTSWpB0tmiOOXYKjz5HveYBmr5yBFCNXO3YjogmlDrMiq6EIL5lxdJ46wSXFbO7y/K1Zs8jgI6REfoBAXoClXRHaqhOqJIoGf0it487b14797HrHXJy2cO0B94nz+245Bd</latexit>

+✏
<latexit sha1_base64="NvOq2SE9oW4iXEnANSCWoL3U5xI=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBC8GHZV1GPQi8cI5iHJEmYnvcmQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GUammUKeKK92KiAHOJNQtsxxaiQYiIg7NaHg78ZtPoA1T8sGOEggF6UsWM0qskx5PO5AYxpXslsp+xZ8CL5IgJ2WUo9YtfXV6iqYCpKWcGNMO/MSGGdGWUQ7jYic1kBA6JH1oOyqJABNm04PH+NgpPRwr7UpaPFV/T2REGDMSkesUxA7MvDcR//PaqY2vw4zJJLUg6WxRnHJsFZ58j3tMA7V85AihmrlbMR0QTah1GRVdCMH8y4ukcVYJLivn9xfl6k0eRwEdoiN0ggJ0haroDtVQHVEk0DN6RW+e9l68d+9j1rrk5TMH6A+8zx+5+5Bf</latexit>�✏
<latexit sha1_base64="yOMNwiZaxiAqlVuvmzZIbCSLAcw=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBAEIeyqqMegF48RzEOSJcxOepMh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruihDNjff/bW1peWV1bL2wUN7e2d3ZLe/sNo1JNoU4VV7oVEQOcSahbZjm0Eg1ERBya0fB24jefQBum5IMdJRAK0pcsZpRYJz2ediAxjCvZLZX9ij8FXiRBTsooR61b+ur0FE0FSEs5MaYd+IkNM6ItoxzGxU5qICF0SPrQdlQSASbMpgeP8bFTejhW2pW0eKr+nsiIMGYkItcpiB2YeW8i/ue1UxtfhxmTSWpB0tmiOOXYKjz5HveYBmr5yBFCNXO3YjogmlDrMiq6EIL5lxdJ46wSXFbO7y/K1Zs8jgI6REfoBAXoClXRHaqhOqJIoGf0it487b14797HrHXJy2cO0B94nz+245Bd</latexit>

+✏
<latexit sha1_base64="NvOq2SE9oW4iXEnANSCWoL3U5xI=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBC8GHZV1GPQi8cI5iHJEmYnvcmQeSwzs0JY8hVePCji1c/x5t84SfagiQUNRVU33V1Rwpmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GUammUKeKK92KiAHOJNQtsxxaiQYiIg7NaHg78ZtPoA1T8sGOEggF6UsWM0qskx5PO5AYxpXslsp+xZ8CL5IgJ2WUo9YtfXV6iqYCpKWcGNMO/MSGGdGWUQ7jYic1kBA6JH1oOyqJABNm04PH+NgpPRwr7UpaPFV/T2REGDMSkesUxA7MvDcR//PaqY2vw4zJJLUg6WxRnHJsFZ58j3tMA7V85AihmrlbMR0QTah1GRVdCMH8y4ukcVYJLivn9xfl6k0eRwEdoiN0ggJ0haroDtVQHVEk0DN6RW+e9l68d+9j1rrk5TMH6A+8zx+5+5Bf</latexit>�✏

(a)

(b)

(c)

(d)

(e)

<latexit sha1_base64="5IToDUHGvkkziotMkMPjNCqSyG4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegBz0mYB6QLGF20knGzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzDhGP6QDyfucUWOl2l23WHLL7gxkmXgZKUGGarf41elFLAlRGiao1m3PjY2fUmU4EzgpdBKNMWUjOsC2pZKGqP10duiEnFilR/qRsiUNmam/J1Iaaj0OA9sZUjPUi95U/M9rJ6Z/7adcxolByeaL+okgJiLTr0mPK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7K3mX5vHZRqtxkceThCI7hFDy4ggrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB56RjNM=</latexit>

G

<latexit sha1_base64="9CIyR+uxBYC7HM/MUU2XnJ/GM4o=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9lVUY9FD3qsYD+gXUo2zbahSXZJsoWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6C7zW2OqNIvkk5nE1Bd4IFnICDaZdN8bn/bKFbfqzoCWiZeTCuSo98pf3X5EEkGlIRxr3fHc2PgpVoYRTqelbqJpjMkID2jHUokF1X46u3WKTqzSR2GkbEmDZurviRQLrScisJ0Cm6Fe9DLxP6+TmPDGT5mME0MlmS8KE45MhLLHUZ8pSgyfWIKJYvZWRIZYYWJsPCUbgrf48jJpnle9q+rF42WldpvHUYQjOIYz8OAaavAAdWgAgSE8wyu8OcJ5cd6dj3lrwclnDuEPnM8fjVqN7Q==</latexit>

G0
v

Fig. 2. (a) Example of a graph G and paths P . (b) For a node v, we build
G′

v by decomposing all nodes before v in topological order (nodes in blue)
so that the subgraph graph formed by these nodes is an arborescence. (c,d)
The bipartite graph Bv is formed by the in-nodes and the out-nodes of v in
G′

v , connected according to P . (d,e) If Bv contains a cycle, v is not good.

max-flow min-cut theorem [12]. For a node v, consider the
decomposed graph before v, G′

v (see Figure 2(b)). Suppose
Vin(v) = {x1, . . . , x|Vin(v)|} and Vout(v) = {y1, . . . , y|Vout(v)|}.
We then consider the graph Hv shown in Figure 3(a), obtained
by first creating a complete bipartite graph between Vin(v)
and Vout(v) (with capacity infinity for every edge) and then
adding an in-edge to each xi with capacity wt(xi, v) and an
out-edge to each yi with capacity wt(v, yi). Notice that any
set of paths going through v satisfying the flow constraints
in G′

v corresponds to a maximum flow in this graph (since
the capacities of in-edges and out-edges will be fully used).
Notice that the only two minimum cuts in Hv are {(si, xi) :
1 ≤ i ≤ |Vin(v)|} or {(yi, ti) : 1 ≤ i ≤ |Vout(v)|}, with min-
cut value wt(Ein(v)) = wt(Eout(v)). This is because, if one
in-edge, say (s1, x1), is not included in the cut, all out-edges
must be included (or else an edge with infinite capacity will
have to be picked).

Next, we notice that sample t reveals the existence of a path
p ∈ P going through (xi, v, yj) if and only if the removal of
edge (xi, yj) in Hv reduces the min-cut value. To see this, we
notice that, if the removal of (xi, yj) in Hv does not reduce the
min-cut, by the max-flow min-cut theorem, there exists a flow
in Hv that does not use (xi, yj) and still achieves total flow
wt(Ein(v)) = wt(Eout(v)), which means that it is possible to
have a flow decomposition P ′ of G′

v that does not include

<latexit sha1_base64="1DPedq+KVANDHFPOjPZEgkX/8E0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlM/uzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AD9CNqQ==</latexit>x2

<latexit sha1_base64="VFAWE4OJO4+Su8MV7QplNTHcIwE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiQq6rLoxmUF+4A2hMl00g6dmYSZSTGk9VfcuFDErR/izr9x2mahrQcuHM65l3vvCWJGlXacb2tldW19Y7OwVdze2d3btw8OmypKJCYNHLFItgOkCKOCNDTVjLRjSRAPGGkFw9up3xoRqWgkHnQaE4+jvqAhxUgbybdLj342bvpZV3JIxaQyOh1PfLvsVJ0Z4DJxc1IGOeq+/dXtRTjhRGjMkFId14m1lyGpKWZkUuwmisQID1GfdAwViBPlZbPjJ/DEKD0YRtKU0HCm/p7IEFcq5YHp5EgP1KI3Ff/zOokOr72MijjRROD5ojBhUEdwmgTsUUmwZqkhCEtqboV4gCTC2uRVNCG4iy8vk+ZZ1b2snt9flGs3eRwFcASOQQW44ArUwB2ogwbAIAXP4BW8WU/Wi/VufcxbV6x8pgT+wPr8ActVlN4=</latexit>x|Vin(v)|
<latexit sha1_base64="VfkpsxIVUFklyITEg1S/ZvLk29g=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0Wom5KoqMuiG5cV7APaECbTSTt0ZhJmJoWYFn/FjQtF3Pof7vwbp20W2nrgwuGce7n3niBmVGnH+baWlldW19YLG8XNre2dXXtvv6GiRGJSxxGLZCtAijAqSF1TzUgrlgTxgJFmMLid+M0hkYpG4kGnMfE46gkaUoy0kXz7MPWzUcPPOpLDKNHj8vB0NPbtklNxpoCLxM1JCeSo+fZXpxvhhBOhMUNKtV0n1l6GpKaYkXGxkygSIzxAPdI2VCBOlJdNrx/DE6N0YRhJU0LDqfp7IkNcqZQHppMj3Vfz3kT8z2snOrz2MiriRBOBZ4vChEEdwUkUsEslwZqlhiAsqbkV4j6SCGsTWNGE4M6/vEgaZxX3snJ+f1Gq3uRxFMAROAZl4IIrUAV3oAbqAINH8AxewZv1ZL1Y79bHrHXJymcOwB9Ynz+975Vq</latexit>y|Vout(v)|

<latexit sha1_base64="BPe0N+To0Athaubit7KVQ5DHX64=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw7jn9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZPb+/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMP0o2p</latexit>y1

<latexit sha1_base64="jqHHPK9dcj+Nl8gzkIh5fDF2vLg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpYdyr9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusnN9flGs3eRwFOIYTOAMPrqAGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMRVo2q</latexit>y2

<latexit sha1_base64="gEMZtwoLFswKXUblnXTOqwkLHCE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfa8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559fT2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcOTI2o</latexit>x1
<latexit sha1_base64="d51aN8Q/WWyQjURY0lERtLpXC5U=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpRERT0WvXisYD+wDWGz3bRLN5uwu6mW0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t5VbWl5ZXcuvFzY2t7Z3irt7DRUlktA6iXgkWz5WlDNB65ppTluxpDj0OW36g5uJ3xxSqVgk7vUopm6Ie4IFjGBtpIdHT5efPOdkeOwVS3bFngItEicjJchQ84pfnW5EkpAKTThWqu3YsXZTLDUjnI4LnUTRGJMB7tG2oQKHVLnp9OIxOjJKFwWRNCU0mqq/J1IcKjUKfdMZYt1X895E/M9rJzq4clMm4kRTQWaLgoQjHaHJ+6jLJCWajwzBRDJzKyJ9LDHRJqSCCcGZf3mRNE4rzkXl7O68VL3O4sjDARxCGRy4hCrcQg3qQEDAM7zCm6WsF+vd+pi15qxsZh/+wPr8AYSnkCs=</latexit>

wt(x1, v)

<latexit sha1_base64="TY7ew3+gN3hHw3S0G6A/okR1Ywk=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJUkJJUUY9FLx4r2A9sQ9hsN+3SzSbsTqol9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5fiy4Btv+tpaWV1bX1nMb+c2t7Z3dwt5+Q0eJoqxOIxGplk80E1yyOnAQrBUrRkJfsKY/uJn4zSFTmkfyHkYxc0PSkzzglICRHh49KD15ldPhiVco2mV7CrxInIwUUYaaV/jqdCOahEwCFUTrtmPH4KZEAaeCjfOdRLOY0AHpsbahkoRMu+n04jE+NkoXB5EyJQFP1d8TKQm1HoW+6QwJ9PW8NxH/89oJBFduymWcAJN0tihIBIYIT97HXa4YBTEyhFDFza2Y9okiFExIeROCM//yImlUys5F+ezuvFi9zuLIoUN0hErIQZeoim5RDdURRRI9o1f0ZmnrxXq3PmatS1Y2c4D+wPr8AYYukCw=</latexit>

wt(x2, v)

<latexit sha1_base64="RZuxocmNrNQxHC+KjGeL/gcCS/0=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJUkJKoqMeiF48V7Ae2IWy2m3bpZhN2J5UQ+i+8eFDEq//Gm//GbZuDtj4YeLw3w8w8PxZcg21/W0vLK6tr64WN4ubW9s5uaW+/qaNEUdagkYhU2yeaCS5ZAzgI1o4VI6EvWMsf3k781ogpzSP5AGnM3JD0JQ84JWCkxycPKqPT1HNOvFLZrtpT4EXi5KSMctS90le3F9EkZBKoIFp3HDsGNyMKOBVsXOwmmsWEDkmfdQyVJGTazaYXj/GxUXo4iJQpCXiq/p7ISKh1GvqmMyQw0PPeRPzP6yQQXLsZl3ECTNLZoiARGCI8eR/3uGIURGoIoYqbWzEdEEUomJCKJgRn/uVF0jyrOpfV8/uLcu0mj6OADtERqiAHXaEaukN11EAUSfSMXtGbpa0X6936mLUuWfnMAfoD6/MHhk6QLA==</latexit>

wt(v, y1)

<latexit sha1_base64="UTUV4hsXC+nf39cqkLRHmejzM8k=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBahgpSkinosevFYwX5gG8Jmu2mXbjZhd1Ipof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zM82PBNdj2t5VbWV1b38hvFra2d3b3ivsHTR0lirIGjUSk2j7RTHDJGsBBsHasGAl9wVr+8Hbqt0ZMaR7JBxjHzA1JX/KAUwJGenzyoDw6G3vVU69Ysiv2DHiZOBkpoQx1r/jV7UU0CZkEKojWHceOwU2JAk4FmxS6iWYxoUPSZx1DJQmZdtPZxRN8YpQeDiJlSgKeqb8nUhJqPQ590xkSGOhFbyr+53USCK7dlMs4ASbpfFGQCAwRnr6Pe1wxCmJsCKGKm1sxHRBFKJiQCiYEZ/HlZdKsVpzLyvn9Ral2k8WRR0foGJWRg65QDd2hOmogiiR6Rq/ozdLWi/Vufcxbc1Y2c4j+wPr8AYfTkC0=</latexit>

wt(v, y2)
<latexit sha1_base64="qYXclCY1ipKUrXgbKVpNP5C1jFY=">AAACBHicbVDLSgNBEJyNrxhfqx5zGQxCAhJ2VdRj0IvHCOYBybLMTibJkNkHM72RsMnBi7/ixYMiXv0Ib/6Nk2QPmljQUFR1093lRYIrsKxvI7Oyura+kd3MbW3v7O6Z+wd1FcaSshoNRSibHlFM8IDVgINgzUgy4nuCNbzBzdRvDJlUPAzuYRQxxye9gHc5JaAl18w/uFAcnozcZFx3k7b0cRjDpDgsjScl1yxYZWsGvEzslBRQiqprfrU7IY19FgAVRKmWbUXgJEQCp4JNcu1YsYjQAemxlqYB8ZlyktkTE3yslQ7uhlJXAHim/p5IiK/UyPd0p0+grxa9qfif14qhe+UkPIhiYAGdL+rGAkOIp4ngDpeMghhpQqjk+lZM+0QSCjq3nA7BXnx5mdRPy/ZF+ezuvFC5TuPIojw6QkVko0tUQbeoimqIokf0jF7Rm/FkvBjvxse8NWOkM4foD4zPH2B7l+0=</latexit>

wt(v, y|Vout(v)|)
<latexit sha1_base64="nrNiymATCf/hJNNjUEyo0cOyzoQ=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK0ICVRUZdFNy4r2Ae0IUymk3boZBJmJtWSBtz4K25cKOLWn3Dn3zhts9DWAxcO59zLvfd4EaNSWda3sbC4tLyymlvLr29sbm2bO7t1GcYCkxoOWSiaHpKEUU5qiipGmpEgKPAYaXj967HfGBAhacjv1DAiToC6nPoUI6Ul19y/d1XxwU1GdTdpiwBSnhYHpVF6PCi5ZsEqWxPAeWJnpAAyVF3zq90JcRwQrjBDUrZsK1JOgoSimJE0344liRDuoy5pacpRQKSTTH5I4ZFWOtAPhS6u4ET9PZGgQMph4OnOAKmenPXG4n9eK1b+pZNQHsWKcDxd5McMqhCOA4EdKghWbKgJwoLqWyHuIYGw0rHldQj27MvzpH5Sts/Lp7dnhcpVFkcOHIBDUAQ2uAAVcAOqoAYweATP4BW8GU/Gi/FufExbF4xsZg/8gfH5A23Hl2E=</latexit>

wt(x|Vin(v)|, v)

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

<latexit sha1_base64="1DPedq+KVANDHFPOjPZEgkX/8E0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/qlb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlM/uzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AD9CNqQ==</latexit>x2

<latexit sha1_base64="VFAWE4OJO4+Su8MV7QplNTHcIwE=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiQq6rLoxmUF+4A2hMl00g6dmYSZSTGk9VfcuFDErR/izr9x2mahrQcuHM65l3vvCWJGlXacb2tldW19Y7OwVdze2d3btw8OmypKJCYNHLFItgOkCKOCNDTVjLRjSRAPGGkFw9up3xoRqWgkHnQaE4+jvqAhxUgbybdLj342bvpZV3JIxaQyOh1PfLvsVJ0Z4DJxc1IGOeq+/dXtRTjhRGjMkFId14m1lyGpKWZkUuwmisQID1GfdAwViBPlZbPjJ/DEKD0YRtKU0HCm/p7IEFcq5YHp5EgP1KI3Ff/zOokOr72MijjRROD5ojBhUEdwmgTsUUmwZqkhCEtqboV4gCTC2uRVNCG4iy8vk+ZZ1b2snt9flGs3eRwFcASOQQW44ArUwB2ogwbAIAXP4BW8WU/Wi/VufcxbV6x8pgT+wPr8ActVlN4=</latexit>x|Vin(v)|
<latexit sha1_base64="VfkpsxIVUFklyITEg1S/ZvLk29g=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0Wom5KoqMuiG5cV7APaECbTSTt0ZhJmJoWYFn/FjQtF3Pof7vwbp20W2nrgwuGce7n3niBmVGnH+baWlldW19YLG8XNre2dXXtvv6GiRGJSxxGLZCtAijAqSF1TzUgrlgTxgJFmMLid+M0hkYpG4kGnMfE46gkaUoy0kXz7MPWzUcPPOpLDKNHj8vB0NPbtklNxpoCLxM1JCeSo+fZXpxvhhBOhMUNKtV0n1l6GpKaYkXGxkygSIzxAPdI2VCBOlJdNrx/DE6N0YRhJU0LDqfp7IkNcqZQHppMj3Vfz3kT8z2snOrz2MiriRBOBZ4vChEEdwUkUsEslwZqlhiAsqbkV4j6SCGsTWNGE4M6/vEgaZxX3snJ+f1Gq3uRxFMAROAZl4IIrUAV3oAbqAINH8AxewZv1ZL1Y79bHrHXJymcOwB9Ynz+975Vq</latexit>y|Vout(v)|

<latexit sha1_base64="BPe0N+To0Athaubit7KVQ5DHX64=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw7jn9coVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndZPb+/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMP0o2p</latexit>y1

<latexit sha1_base64="jqHHPK9dcj+Nl8gzkIh5fDF2vLg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpYdyr9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusnN9flGs3eRwFOIYTOAMPrqAGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMRVo2q</latexit>y2

<latexit sha1_base64="gEMZtwoLFswKXUblnXTOqwkLHCE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfa8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559fT2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcOTI2o</latexit>x1

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

<latexit sha1_base64="JqB2FRrp0XTFU0AkwgVgW1pt5TU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+wFtKJvtpl272Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcTLj0Q=</latexit>1

(a) (b)

<latexit sha1_base64="v/WL/lyvM7Py8k4UI/JuwE5hWvc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSg+l5vXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1Wz+8vKrWbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gAGro2j</latexit>s1

<latexit sha1_base64="Up89XL+/GF6q9sLJeaBgbzfOVFU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis96F61Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4r5/cX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gAIMo2k</latexit>s2
<latexit sha1_base64="j9ebr9sZ/dcxq6WnsP4YZFzrOvY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXvVXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteJeV8/uLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAJuI2l</latexit>

t2

<latexit sha1_base64="UgLHzPwgdhFI3nHU6cfflvIRt9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/a8XrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NTJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbAje4svLpHlW9S6r5/cXldpNHkcRjuAYTsGDK6jBHdShAQwG8Ayv8OZI58V5dz7mrQUnnzmEP3A+fwAINI2k</latexit>

t1
<latexit sha1_base64="v/WL/lyvM7Py8k4UI/JuwE5hWvc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSg+l5vXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1Wz+8vKrWbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gAGro2j</latexit>s1

<latexit sha1_base64="Up89XL+/GF6q9sLJeaBgbzfOVFU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis96F61Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4r5/cX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gAIMo2k</latexit>s2
<latexit sha1_base64="j9ebr9sZ/dcxq6WnsP4YZFzrOvY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpAXvVXqnsVtwZyDLxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+KXZTwxPKRnTAO5YqGnHjZ7NTJ+TUKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOkUbQje4svLpFmteJeV8/uLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOk8+K8Ox/z1hUnnzmCP3A+fwAJuI2l</latexit>

t2

<latexit sha1_base64="UgLHzPwgdhFI3nHU6cfflvIRt9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA/a8XrniVt0ZyDLxclKBHPVe+avbj1kacYVMUmM6npugn1GNgkk+KXVTwxPKRnTAO5YqGnHjZ7NTJ+TEKn0SxtqWQjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvuZUEmKXLH5ojCVBGMy/Zv0heYM5dgSyrSwtxI2pJoytOmUbAje4svLpHlW9S6r5/cXldpNHkcRjuAYTsGDK6jBHdShAQwG8Ayv8OZI58V5dz7mrQUnnzmEP3A+fwAINI2k</latexit>

t1

Fig. 3. (a) Graph Hv used to derive conditions for T to reveal P . Notice
that any set of paths P consistent with T induces a maximum flow in G′

v
with max-flow value wt(Ein(v)) = wt(Eout(v)). (b) By removing (x1, y1),
the only possible new minimum cut is the set of edges circled in blue.

the path p containing (xi, v, yj). Conversely, if the min-cut is
reduced by the removal of (xi, yj), then any set of paths P
that explains sample t must contain a path through (xi, v, yj).

Finally, we need to find conditions for the removal of
(xi, yj) to reduce the min-cut value of Hv . Notice, from
Figure 3(b), that in the graph obtained by removing (x1, y1)
from Hv , the only possible minimum cuts are {(si, xi) : 1 ≤
i ≤ |Vin(v)|}, {(yi, ti) : 1 ≤ i ≤ |Vout(v)|}, or

{(si, xi) : 2 ≤ i ≤ |Vin(v)|} ∪ {(yi, ti) : 2 ≤ i ≤ |Vout(v)|}.
This is because, any finite cut that does not contain (s1, x1)
must contain {(yi, ti) : 2 ≤ i ≤ |Vout(v)|} (and similarly for
not containing (y1, t1)). Therefore, the removal of (x1, y1)
reduces the min-cut of Hv if and only if

wt(Ein(v)\(x1, v))+wt(Eout(v)\(v, y1))<wt(Ein(v)). (2)

For a general edge (xi, yj), this condition can be equivalently
expressed (by noticing that wt(Ein(v)) = wt(Eout(v))) as

wt(Ein(v) \ (xi, v)) < wt((v, yj)). (3)
wt(Eout(v) \ (v, yj)) < wt((xi, v)), (4)

Moreover, since

wt(Ein(v) \ (xi, v)) =
∑
x ̸=xi

∑
y ̸=yj

wt((x, v, y))

+ wt((v, yj))− wt((xi, v, yj)),

condition (3) can be expressed in terms of triplets (x, v, y) as∑
x ̸=xi

∑
y ̸=yj

wt((x, v, y)) < wt((xi, v, yj)). (5)

Using the form in (3), the above discussion implies the
following necessary conditions for T to reveal P :

Lemma 1. In order for the set of samples T to reveal P , it
must hold that, for all v ∈ G and all u,w ∈ G′

v such that
(ℓ(G′

v[: u]), v, w) is a subpath of some path in P ,

wt(Ein(v) \ (u, v)) < wt((v, w)) (6)

in G′
v for some sample t ∈ [T].

Lemma 1 is illustrated in Figure 4. The two red paths
in Figure 4(a) violate the condition in (6). From Lemma 1,
T should not reveal their presence. This is illustrated in
Figure 4(b), where a set of paths consistent with the flow can
be found without including either of the red paths.

Fig. 4. (a) For the true paths (1, 4, 5) and (3, 4, 7) shown in red, the necessary
condition is not satisfied. The necessary condition is satisfied for (2, 4, 6), so
it’s present in every decomposition. (b) We can satisfy the flow constraint
without including the paths (1, 4, 5) or (3, 4, 7) in the decomposition of 4.

In order to prove Theorem 1, we need to prove that Algo-
rithm 1 recovers P correctly if, in addition to the necessary
condition in Lemma 1, all nodes in G are good (Definition 3).

Lemma 2. Algorithm 1 reconstructs P and the corresponding
path weights for all T samples if (G, T) satisfies the following:

1) all nodes in G are good.
2) for any v ∈ G, and any nodes u,w in G′

v such that
(ℓ(G′

v[: u]), v, w) is a subpath of a path in P ,

wt(Ein(v) \ (u, v)) < wt((v, w)) (7)

in G′
v for some sample t ∈ [T].

Proof: Consider a node v and let a be the node following
v in topological order. We will prove that if G′

v is the graph
produced by the algorithm before v is decomposed, and if
conditions (1) and (2) hold for v, then G′

a is the graph after v is
decomposed. Given this property, at the end of the algorithm,
all nodes will be correctly decomposed with correct weights
for each sample and the set of paths that start at a source and
end at a sink in the resulting graph will be equal to P .

Suppose G′
v is the graph at the beginning of the iteration

where v is decomposed. Suppose nodes u,w ∈ G′
v are such

that (ℓ(G′
v[: u]), v, w) is a subpath of a path in P . Let

e1 = (u, v) and e2 = (v, w). If there is some t ∈ [T]
such that wt(Ein(v)\e1) < wt(e2), then clearly a path going
through e1 and e2 must exist in P because there is not
enough weight in the set of edges Ein(v)\e1 to completely
satisfy the weight of e2 in sample t. Therefore, if the second
condition in the theorem statement is satisfied, all u,w such
that (ℓ(G′

v[: u]), v, w) is a subpath of a path in P are included
in the decomposition of v, and there are no false connections
between in-nodes and out-nodes of v in the decomposition
since the algorithm picks the sparsest decomposition. This
means that the decomposition of v corresponds exactly to the
bipartite graph Bv used in Definition 3. Then, by the first
condition, there is no cycle in Bv , which implies that there
is a unique way to assign edge weights after decomposing
v (since there are no cycles, one can repeatedly find a node
with in- or out-degree one in Bv , assign the weight of the
corresponding edge and remove it). Thus, we have recovered
the true decomposition of v with the correct weights for each
sample, and the invariant holds.

V. PROOF OF THEOREM 2

A. Upper Bound

We prove the upper bound on T ∗(ϵ) by first calculating the
probability that condition (2) in Lemma 2 holds in a sample.
Given the equivalence between (4), (3) and (5), established in
Section IV, we can instead compute the probability that, for
some (u, v, w) that is a subpath of some p ∈ P , we have∑

x ̸=u

∑
y ̸=w

wt((x, v, y)) < wt((u, v, w)), (8)

which then implies that the tth sample reveals (x, y, z). In
what follows, we let U denote a random variable uniformly

distributed in (0, 1) and let Hs denote a random variable with
the Irwin-Hall distribution with parameter s.

Lemma 3. Suppose that for some node v in G and nodes
u,w ∈ G′

v there are a paths in P that go through the subpath
(ℓ(G′

v[: u]), v, w), and b paths that pass through v that do
not go through either ℓ(G′

v[: u]) or w. The probability that
(u, v, w) satisfies (8) is given by

1

(b+ a)!

⌊a⌋∑
n=0

(−1)n
(
b+ a

n

)
(a− n)b+a. (9)

Proof: We have that condition (8) holds with probability
P (Hb < Ha). The pdf of Hb − Ha is given by the pdf of
Hb+a shifted to the left by a. Thus,

P (Hb −Ha < 0) = FHb+a
(a) (10)

=
1

(b+ a)!

⌊a⌋∑
n=0

(−1)n
(
b+ a

n

)
(a− n)b+a

where FX is the cumulative distribution function of X .
With this lemma, we can prove Theorem 2. Recall that k

is the maximum number of paths in P passing through any
given node in G. Consider a node v in G. Then for a pair of
nodes u,w ∈ G′

v such that (ℓ(G′
v[: u]), v, w) is a subpath of a

path in P , we have that (8) holds for a particular sample with
probability at least 1

k! by assuming a = 1 and b = k − 1 in
Lemma 3. The probability that the condition does not hold for
any sample is therefore at most

(
1− 1

k!

)T
by the independence

of the samples. The probability that there is at least one v ∈ G
and u,w ∈ G′

v such that (8) does not hold for any sample is
upper bounded by |V |k

(
1− 1

k!

)T
by the union bound since

there are at most k such pairs of nodes u,w ∈ G′
v for each

v ∈ G. Thus the probability the conditions in Theorem 1 hold
is lower bounded by 1− |V |k

(
1− 1

k!

)T
. For a probability of

error at most ϵ, we solve for T to obtain the result.

B. Lower Bound

Suppose the graph is as follows. The set of nodes
is V = {u1, u2, . . . , uk} ∪ {v} ∪ {x1, x2, . . . , xk}. The
set of edges is E = {(u1, v), (u2, v), . . . , (uk, v)} ∪
{(v, x1), (v, x2), . . . , (v, xk)}. The set of paths is P =
{(u1, v, x1), (u2, v, x2), . . . , (uk, v, xk). Clearly, all nodes are
good for this problem instance. In order to reveal path
(u1, v, x1), we must have wt(Ein(v) \ (u1, v)) < wt((v, x1))
for some sample t by Theorem 1. This occurs in a sample
with probability 1

k! by Lemma 3. The probability this doesn’t
occur in T samples is given by (1− 1

k!)
T . Solving for T , we

find that a lower bound on T ∗(ϵ) for this problem instance is

T ∗(ϵ) ≥ ln(ϵ)

ln(1− 1
k!)
∼ k! ln(1/ϵ). (11)

VI. FASTER ALGORITHM FOR DECOMPOSING A NODE

In Algorithm 1, for each v with more than one in-edge,
we find the sparsest decomposition of the node v. Finding the
sparsest decomposition of v using brute force search quickly

becomes computationally infeasible as the number of in-edges
and out-edges of v increases. We therefore use Algorithm 2
in simulation for fast node decomposition. Theorem 1 still
holds when Algorithm 2 is used in place of sparsest node
decomposition in Algorithm 1.

Algorithm 2 relies on the following optimization problem.
Given a set of new nodes and new edges that may or may
not decompose v in G, the optimization problem finds the
edge weights that minimize the sum of squared violations of
the flow constraints. For a set S of node pairs u,w where
u ∈ Vin(v) and w ∈ Vout(v), let s[0] = u and s[1] = w. The
quadratic program is given by

min
zs,t≥0: s∈S, t∈[T]

T∑
t=1

(∑
u∈Vin(v)

wt((u, v))−
∑

s: s[0]=u

zs,t

2

+
∑

w∈Vout(v)

wt((v, w))−
∑

s: s[1]=w

zs,t

2)
.

(12)

where the variable zs,t represents the weight of the path going
from s[0] to s[1] that we choose. Let f(G, v, S) be the optimal
value of the program and g(G, v, S) be the optimal solution.

Algorithm 2: Fast Node Decomposition
Data: G, v, ϵ
Result: S, q

1 S ← {{u,w} : (u, v, w) must exist in decomposition
of v} (computed using condition (3)) ;

2 b← f(G, v, S);
3 q ← g(G, v, S);
4 while b > ϵ do
5 R← ∅;
6 for {u,w} /∈ S do
7 S′ ← S ∪ {{u,w}};
8 b′ ← f(G, v, S′);
9 if b′ < b then

10 b← b′;
11 R← S′;
12 q ← g(G, v, S′);

13 S ← R;

VII. SIMULATIONS

We now discuss an example of our theory applied to a
proteoform inference problem. We construct a peptide graph
from a proteoform database as follows.

1) For each proteoform in the database of known proteo-
forms, add all of its peptides as nodes in the graph.

2) Connect these observed peptide nodes with directed
edges reflecting the order in which they appear in the
proteoform.

3) Set the weight of a peptide node equal to the peptide’s
observed abundance.

Fig. 5. This is the structure of the peptide graph used for the simulations.
Each path in the original graph containing only nodes with one in-edge and
one out-edge was condensed into one node.

If possible, we calculate the unique set of edge weights in
the graph that are consistent with the observed node weights.
We then want to infer the true paths in the graph given the
samples that produced distinct sets of edge weights, including
paths that were not used to construct the peptide graph.

In the simulation, we used a true peptide graph constructed
as above, but did not have access to the ground truth prote-
oforms for a real data set. We therefore let P equal the set
of proteoforms used to construct the peptide graph, and let
the weight of each path in P be i.i.d. uniformly distributed
between 0 and 1 fora each sample as Section IV.

The graph we used (Figure 5) contains seven proteoform
paths (|P | = 7) and 72 peptide nodes (|V | = 72). There is
a unique edge weight assignment given the node weights for
this graph. Also, all nodes are good in this graph. We used
100 trials to estimate the mean number of samples necessary
for the condition in Theorem 1 to hold and obtained 39.08.

For a range of number of samples T , we ran Algorithm 1
using the fast algorithm we designed for node decomposition
in Section VI, and recorded the number of paths in P that
were reconstructed and the total number of paths output. We
ran five trials for each number of samples, and recorded the
averages of the statistics for each number of samples (see
Figure 6). We observe that the algorithm was performing
perfectly even before the the average number of samples for
the Theorem 1 to hold. We also added i.i.d. Gaussian noise
with mean µ = 0 and standard deviation σ = 0.025 to the the

Fig. 6. The top plot shows the performance of the algorithm when no noise
is added to the edges, and the bottom plot shows the performance when
independent Gaussian noise with standard deviation σ = 0.025 was added to
each edge weight.

edge weights and ran the algorithm (see Figure 6). We observe
that the noise did not affect the algorithm’s performance much
at this noise level.

REFERENCES
[1] H. Steen and M. Mann, “The ABC’s (and XYZ’s) of peptide sequenc-

ing,” Nature Reviews Molecular Cell Biology, vol. 5, pp. 699–711, 2004.
[2] L. M. Smith and N. L. Kelleher, “Proteoform: a single term describing

protein complexity,” Nature Methods, vol. 10, pp. 186–187, 2013.
[3] Z. Wang, M. Gerstein, and M. Snyder, “Rna-seq: A revolutionary tool

for transcriptomics,” Nature reviews. Genetics, vol. 10, pp. 57–63, 12
2008.

[4] S. Kannan, J. Hui, K. Mazooji, L. Pachter, and D. Tse, “Shannon: An
information-optimal de novo rna-seq assembler,” bioRxiv, 2016.

[5] S. Mao, L. Pachter, D. Tse, and S. Kannan, “Refshannon: A genome-
guided transcriptome assembler using sparse flow decomposition,” PLOS
ONE, vol. 15, pp. 1–14, 06 2020.

[6] V. Bansal and V. Bafna, “Hapcut: An efficient and accurate algorithm
for the haplotype assembly problem,” Bioinformatics (Oxford, England),
vol. 24, pp. i153–9, 09 2008.

[7] A. Afiahayati, K. Sato, and Y. Sakakibara, “Metavelvet-sl: An extension
of the velvet assembler to a de novo metagenomic assembler utilizing
supervised learning,” DNA research : an international journal for rapid
publication of reports on genes and genomes, vol. 22, 11 2014.

[8] A. Töpfer, T. Marschall, R. A. Bull, F. Luciani, A. Schönhuth, and
N. Beerenwinkel, “Viral quasispecies assembly via maximal clique
enumeration,” PLOS Computational Biology, vol. 10, pp. 1–10, 03 2014.

[9] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov, “How
to split a flow?,” in 2012 Proceedings IEEE INFOCOM, pp. 828–836,
2012.

[10] M. Shao and C. Kingsford, “Theory and a heuristic for the minimum
path flow decomposition problem,” IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, vol. 16, no. 2, pp. 658–670, 2019.

[11] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple bounds
and greedy algorithms for decomposing a flow into a minimal set of
paths,” European Journal of Operational Research, vol. 185, pp. 1390–
1401, 03 2008.

[12] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

