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Abstract—We consider the problem of communicating over
a channel that randomly “tears” the message block into small
pieces of different sizes and shuffles them. For the binary
torn-paper channel with block length n and pieces of length
Geometric(pn), we characterize the capacity as C = e−α,
where α = limn→∞ pn logn. Our results show that the case
of Geometric(pn)-length fragments and the case of deterministic
length-(1/pn) fragments are qualitatively different and, surpris-
ingly, the capacity of the former is larger. Intuitively, this is due
to the fact that, in the random fragments case, large fragments
are sometimes observed, which boosts the capacity.

I. INTRODUCTION

Consider the problem of transmitting a message by writing
it on a piece of paper, which will be torn into small pieces of
random sizes and randomly shuffled. This coding problem is
illustrated in Figure 1. We refer to it as the torn-paper coding,
in allusion to the classic dirty-paper coding problem [1].

This problem is mainly motivated by macromolecule-based
(and in particular DNA-based) data storage, which has recently
received significant attention due to several proof-of-concept
DNA storage systems [2–7]. In these systems, data is written
onto synthesized DNA molecules, which are then stored in
solution. During synthesis and storage, molecules in solution
are subject to random breaks and, due to the unordered
nature of macromolecule-based storage, the resulting pieces
are shuffled [8]. Furthermore, the data is read via high-
throughput sequencing technologies, which is typically pre-
ceded by physical fragmentation of the DNA with techniques
like sonication [9]. In addition, the torn-paper channel is
related to the DNA shotgun sequencing channel, studied in
[10–12], but in the context of variable-length reads, which are
obtained in nanopore sequencing technologies [13, 14].
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Fig. 1. The torn-paper channel.

We consider the scenario where the channel input is a
length-n binary string that is then torn into pieces of lengths

N1, N2, ..., each of which has a Geometric(pn) distribution.
The channel output is the unordered set of these pieces. As we
will see, even this noise-free version of the torn-paper coding
problem is non-trivial.

To obtain some intuition, notice that E[Ni] = 1/pn, and
hence it is reasonable to compare our problem to the case
where the tearing points are evenly separated, and Ni = 1/pn
for i = 1, 2, ..., npn with probability 1. In this case, the chan-
nel becomes a shuffling channel, similar to the one considered
in [15], but with no noise. Coding for the case of deterministic
fragments of length Ni = 1/pn is easy: since the tearing
points are known, we can prefix each fragment with a unique
identifier, which allows the decoder to correctly order the
npn fragments. From the results in [15], such an index-based
coding scheme is capacity-optimal for the shuffling channel,
and any achievable rate must satisfy, for large n,

R < (1− pn log n)+. (1)

If we let α = limn→∞ pn log n, the capacity for the case of
deterministic fragment lengths becomes (1− α)+.

It is not clear a priori whether the capacity of the torn-
paper channel (with random fragment lengths) should be
higher or lower than (1 − α)+. The fact that the tearing
points are not known to the encoder makes it challenging
to place a unique identifier in each fragment, suggesting that
the torn-paper channel is “harder” and should have a lower
capacity. The main result of this paper contradicts this intuition
and shows that the capacity of the torn-paper channel with
Geometric(pn)-length fragments is higher than (1 − α)+.
More precisely, we show that the capacity of the torn-paper
channel is C = e−α. The comparison is shown in Figure 2.
Intuitively, this boost in capacity comes from the tail of
the geometric distribution, which guarantees that a fraction
of the fragments will be significantly larger than the mean
E[Ni] = 1/pn. This allows the capacity to be positive even
for α ≥ 1, in which case the capacity of the deterministic-
tearing case in (1) becomes 0.

To prove the converse part of this result we partition
the set of fragments into bins of fragments with roughly
the same size and view the torn-paper channel as parallel
shuffling channels. The achievability is based on a random
code construction and optimal decoding. We also present an
explicit code construction based on the idea of interleaving
a synchronization pilot sequence with codewords from an
erasure code. The synchronization sequence allows fragments
that are long enough to have their location in the codeword
determined [16]. As shown in Figure 2, the rates achieved



by this interleaved-pilot scheme have a similar shape to the
capacity curve, but with a significant gap.

Related literature: The problem of reconstructing a string
from a set of its subsequences has been studied in the context
of the assembly problem [10, 11], the trace reconstruction
problem [17–19], and the problem of reconstructing a string
from its substring spectrum [12, 20]. In all of these settings, the
set of observed strings have overlaps with each other, which
is different from the case considered here.

Several recent works have designed codes tailored to spe-
cific aspects of DNA storage. These include DNA synthesis
constraints such as sequence composition [6, 21, 22], the
asymmetric nature of the DNA sequencing error channel [23],
the need for codes that correct insertion errors [24], and the
need for techniques to allow random access [22].

Motivated by DNA-based storage, a few recent works have
considered the problem of coding across an unordered set of
strings [25–27] and the problem of coding over sets [28, 29].
Channels that shuffle blocks of information were also recently
studied in the context of the bee-identification problem [30]
and noisy permutation channels [31].

Finally, the interleaved-pilot scheme presented in Sec-
tion VII is related to the notion of phase detection sequences,
which appear in the context of positioning systems [16].
Our proposed construction is based on de Bruijn sequences
[32], which have been used in the problem of sequence
reconstruction from substring profiles [21].
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Fig. 2. Comparison between the capacity of the torn-paper channel C = e−α,
the capacity of the shuffling channel with fragments of deterministic length
1/pn, and the rate achieved on the torn-paper channel by the explicit code
construction based on the interleaved-pilot scheme.

II. PROBLEM SETTING

We consider the problem of coding for the torn-paper
channel, illustrated in Figure 1. The transmitter encodes a
message W ∈ {1, ..., 2nR} into a length-n binary codeword
Xn ∈ Fn2 . The channel output is a set of binary strings

Y =
{
~Y1, ~Y2, . . . , ~YK

}
. (2)

The process by which Y is obtained is described next.
1) The channel tears the input sequence into segments

of Geometric(pn)-length for a tearing probability pn. More

specifically, let N1, N2, ... be i.i.d. Geometric(pn) random
variables, and K be the smallest index such that

∑K
i=1Ni ≥ n.

Notice that K is also a random variable.
The channel tears Xn into segments ~X1, ..., ~XK , where

~Xi =
[
X1+

∑i−1
j=1Nj

, ..., X∑i
j=1Nj

]
,

for i = 1, ...,K − 1 and

~XK =
[
X1+

∑K−1
j=1 Nj

, ..., Xn

]
.

We note that this process is equivalent to independently tearing
the message in between consecutive bits with probability
pn. More precisely, let T2, T3, ..., Tn be binary indicators of
whether there is a cut between Xi−1 and Xi. Then, letting Tis
be i.i.d. Bernoulli(pn) random variables results in independent
fragments of length Geometric(pn). Also, K = 1 +

∑n
i=2 Ti,

implying that E[K] = 1 + (n− 1)pn = npn + (1− pn).
2) Given K, let [π1, ..., πK ] be a uniformly distributed

random permutation on [1, 2, . . . ,K]. The output segments are
then obtained by setting, for i = 1, ...,K,

~Yi = ~Xπi . (3)

We note that there are no bit-level errors, e.g., bit flips,
in this process. We also point out that we allow the tearing
probability to be a function of the block length n, thus,
including subscript n in pn.

A code with rate R for the torn-paper channel is a set C
of 2nR binary codewords, each of length n, together with a
decoding procedure that maps a set Y of variable-length binary
strings to an index Ŵ ∈ {1, ..., 2nR}. The message W is
assumed to be chosen uniformly at random from {1, ..., 2nR},
and the error probability of a code is defined accordingly. A
rate R is said to be achievable if there exists a sequence of
rate-R codes {Cn}, where Cn has blocklength n, whose error
probability tends to 0 as n→∞. The capacity C is defined as
the supremum over all achievable rates. Notice that C should
be a function of the sequence of tearing probabilities {pn}∞n=1.

Notation: Throughout the paper, log(·) represents the log-
arithm base 2, while ln(·) represents the natural logarithm.
For functions f(n) and g(n), we write g(n) = o(f(n)) if
g(n)/f(n) → 0 as n → ∞. For an event A, we let 1A or
1{A} be the binary indicator of A.

III. MAIN RESULTS

If the encoder had access to the tearing locations ahead of
time, a natural coding scheme would involve placing unique
indices on every fragment, and using the remaining bits for
encoding a message. In particular, if the message block was
evenly broken into npn pieces of length Ni = 1/pn, results
from [15] imply that placing a unique index of length log(npn)
in each fragment is capacity optimal. The rate achieved is

(Ni − log(npn))/Ni = 1− pn log(npn),

and the capacity is (1 − α)+, where we define α =
limn→∞ pn log(npn) = limn→∞ pn log n (assuming the limit
exists). If α ≥ 1, no positive rate is achievable.



However, in our setting, the fragment lengths are random
and the same index-based approach cannot be used. Because
we do not know the tearing points, we cannot place indices
at the beginning of each fragment. Furthermore, while the
expected fragment length may be large, some fragments may
be shorter than log(npn) and a unique index could not be
placed in them even if we knew the tearing points. Our main
result shows that, surprisingly, the random tearing locations
and fragment lengths in fact increase the channel capacity.

Theorem 1. The capacity of the torn-paper channel is

C = e−α,

where α = limn→∞ pn log n.

At a high level, the reason for an exponential to appear
in the capacity expression in Theorem 1 is that, if N (n) has
a Geometric(pn) distribution, as n → ∞, N (n)/ log n con-
verges in distribution to an Exponential(α) random variable,
where α = limn→∞ pn log n (provided the limit exists). In
Section IV, we provide additional discussion on the intuition
behind the capacity expression.

The rest of the paper is organized as follows. In Sections V
and VI we prove Theorem 1. To prove the converse to this
result we exploit the fact that, for large n, Ni/ log n has
an approximately exponential distribution. This, together with
several concentration results, allows us to partition the set
of fragments into multiple bins of fragments with roughly
the same size and view the torn-paper channel, in essence,
as parallel channels with fixed-size fragments. Our achiev-
ability is based on random coding arguments and does not
provide much insight into practical coding schemes. Then, in
Section VII we explore an explicit code construction based
on “sprinkling” a synchronization sequence throughout all
codewords, which allows fragments that are long enough to be
ordered. A significant gap remains between the rate achieved
by this explicit construction and the true capacity.

IV. INTUITION FOR CAPACITY EXPRESSION

The capacity expression in Theorem 1 can be intuitively
understood by considering a modified channel where the
transmitter knows the locations of all tearing points. In that
setting, a simple coding approach is the following: we ig-
nore all fragments that are shorter than log n and we place
a unique index at the beginning of every fragment longer
than log n. Since for large n, Ni/ log n has approximately
an Exponential(α) distribution (which we formally state in
Lemma 2),

Pr (Ni ≥ log n) ≈ e−α. (4)

Since the total number of fragments is roughly n/E[Ni] =
npn, we need

log(npne
−α) < log n

bits per fragment for the index, making it feasible to place a
unique index in each fragment longer than log n.

As we show later in Lemma 6, the number of bits from the
original codeword Xn that end up in fragments of length at
least log n, for large n, is approximately

n(α+ 1)e−α.

Out of those bits, since α ≈ pn log n, we use

(npne
−α) log n ≈ nαe−α

for indices. Hence, we are left with

n(α+ 1)e−α − nαe−α = ne−α

message bits. Since there is no noise, message bits can be
written directly onto the non-index parts of the fragments,
yielding a data rate of e−α. The decoding procedure is
straightforward: using the unique indices the fragments can
be ordered and the message bits can then be read directly.

Notice that this scheme cannot be employed in the original
torn-paper channel since the tearing points are not known at
the transmitter. Furthermore, it is not obvious that throwing
out fragments shorter than log n is capacity-optimal. Hence,
this scheme is only included to provide intuition and place the
capacity expression in context.

V. CONVERSE

In order to prove the converse for Theorem 1, we first
partition the input and output strings based on length. This
allows us to view the torn-paper channel as a set of parallel
channels, each of which with fragments of roughly the same
size. More precisely, for an integer parameter L, we will let

Xk =
{
~Xi : k−1L log n ≤ Ni < k

L log n
}

and

Yk =
{
~Yi : k−1L log n ≤ Nπi < k

L log n
}
, (5)

for k = 1, 2, ..., and we will think of the transformation from
Xk to Yk as a separate channel. Notice that the kth channel is
intuitively similar to the shuffling channel with equal-length
pieces considered in [25].

We will use the fact that the number of fragments in Yk
concentrates as n→∞. More precisely, we let

qk,n = Pr

(
k − 1

L
≤ N1

log n
<
k

L

)
, (6)

and we have the following lemma, proved in Section VIII.

Lemma 1. The number of fragments in Yk satisfies

Pr (||Yk| − npnqk,n| > εnpn) ≤ 4e−np
2
nε

2/4, (7)

for any ε > 0 and n large enough,.

Notice that, since limn→∞ pn log n = α, E
[
N1

logn

]
→ α−1

as n → ∞. Moreover, asymptotically, N1

logn approaches an
Exponential(α) distribution. This known fact is stated as the
following lemma, which we also prove in Section VIII.



Lemma 2. If N (n) is a Geometric(pn) random variable and
limn→∞E[N (n)]/ log n = 1/α, then

lim
n→∞

Pr
(
N (n) ≥ β log n

)
= e−αβ . (8)

Lemma 1 implies that, with high probability, the number
of fragments in the kth channel satisfies ||Yk| − npnqk,n| <
εnpn, which in particular implies that

lim
n→∞

E [|Yk|]
npn

= lim
n→∞

npnqk,n + o(npn)

npn

= lim
n→∞

Pr
(
k−1
L ≤ N1

logn <
k
L

)
= e−α(k−1)/L − e−αk/L, (9)

where the last equality follows from Lemma 2. Next, we define
the event Ek,n = {||Yk| − npnqk,n| > εnnpn}, where εn =
1/ log n, which guarantees that, as n → ∞, εn → 0 and
Pr(Ek,n)→ 0 from Lemma 1. Then,

H(Yk) ≤ H(Yk,1Ek,n) ≤ 1 +H(Yk|1Ek,n)

≤ 1 + 2nPr(Ek,n) +H(Yk|Ēk,n), (10)

where we loosely upper bound H(Yk|Ek) with 2n, since Y
can be fully described by the binary string Xn and the n− 1
tearing points indicators T2, ..., Tn.

In order to bound H(Yk|Ēk,n), i.e., the entropy of Yk given
that its size is close to npnqk,n, we first note that the number
of possible distinct sequences in Yk is

k
L logn∑

i= k−1
L logn

2i < 2 · 2 k
L logn = 2nk/L.

Moreover, given Ēk,n,

|Yk| ≤ npnqk,n + εnnpn

= npn

[
εn + Pr

(
k − 1

L
≤ N1

log n
<
k

L

)]
,M, (11)

and the set Yk can be seen as a histogram (x1, ..., x2nk/L)
over all possible 2nk/L strings with

∑
xi = M . Notice that

we can view the last element of the histogram as containing
“excess counts” if |Yk| < M . Hence, using a simple counting
argument to bound the number of different possible histograms
(see Lemma 1 in [25]),

H(Yk|Ēk,n) ≤ log

(
2nk/L +M − 1

M

)
≤M log

(
e(2nk/L +M − 1)

M

)
= M

[
log
(

2nk/L +M − 1
)

+ log(e)− logM
]

= M
[
max( kL log n, logM)− logM + o(log n)

]
= M

[
( kL log n− logM)+ + o(log n)

]
= M log n

[
( kL − logM/ log n)+ + o(1)

]
.

(12)

From (11), we have logM/log n→ 1 as n→∞. Combining
(10) and (12), dividing by n, and letting n→∞ yields

lim
n→∞

H(Yk)

n
≤ lim
n→∞

H(Yk|Ēk,n) + 1 + 2nPr(Ek,n)

n

≤ lim
n→∞

M log n

n

(
k

L
− 1

)+

= lim
n→∞

pn log n (qk,n + εn)

(
k

L
− 1

)+

= α
(
e−α(k−1)/L − e−αk/L

)( k
L
− 1

)+

. (13)

In order to bound an achievable rate R, we use Fano’s
inequality to obtain

nR ≤ I(Xn;Y) + o(n) ≤ H(Y) + o(n), (14)

and we conclude that any achievable rate must satisfy R ≤
limn→∞

H(Y)
n . In order to connect (14) and (13), we state the

following lemma, which allows us to move the limit inside
the summation. The proof is in Section VIII.

Lemma 3. If Yk is defined as in (5) for k = 1, 2, ...,

lim
n→∞

H(Y)

n
≤
∞∑
k=1

lim
n→∞

H(Yk)

n
.

Using this lemma and (13), we can upper bound any
achievable rate as

R ≤ lim
n→∞

H(Y)

n
≤
∞∑
k=1

lim
n→∞

H(Yk)

n

=

∞∑
k=L+1

α
(
e−α(k−1)/L − e−αk/L

)
( kL − 1)

=
α

L

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)
− α

∞∑
k=L+1

(
e−α(k−1)/L − e−αk/L

)
=
α

L

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)
− αe−α, (15)

where the last equality is due to a telescoping sum. The
remaining summation can be computed as

∞∑
k=L+1

k
(
e−α(k−1)/L − e−αk/L

)
= (L+ 1)e−α +

∞∑
k=L+2

e−α(k−1)/L

= Le−α + e−α
∞∑
k=0

e−αk/L = Le−α +
e−α

1− e−α/L
.

We conclude that any achievable rate must satisfy

R <
α

L

(
Le−α +

e−α

1− e−α/L

)
− αe−α =

αe−α

L(1− e−α/L)
,



for any positive integer L. Since

lim
L→∞

L(1− e−α/L) = α,

we obtain the outer bound R < e−α.

VI. ACHIEVABILITY VIA RANDOM CODING

A random coding argument can be used to show that any
rate R < e−α is achievable. Consider generating a codebook
C with 2nR codewords, by independently picking each symbol
as Bernoulli(1/2). Let C = {x1, ...,x2nR}, where xi is the
random codeword associated with message W = i. Notice that
optimal decoding can be obtained by simply finding an index
i such that xi corresponds to a concatenation of the strings in
Y . If more than one such codewords exist, an error is declared.

Suppose message W = 1 is chosen and Y = {~Y1, ..., ~YK}
is the random set of output strings. To bound the error
probability, we consider a suboptimal decoder that throws
out all fragments shorter than γ log n, for some γ > 0 to
be determined, and simply tries to find a codeword xi that
contains all output strings Yγ = {~Yi : Nπi ≥ γ log n} as non-
overlapping substrings. If we let E be the error event averaged
over all codebook choices, we have

Pr(E) = Pr(E|W = 1)

= Pr (some xj , j 6= 1, contains all strings in Yγ |W = 1) .

Using a similar approach to the one used in Section V, it
can be shown that E[|Yγ |] = npn Pr(N1 ≥ γ log n)+o(npn).
From Lemma 2, we thus have

lim
n→∞

E[|Yγ |]
n · pn

= lim
n→∞

Pr (N1 ≥ γ log n) = e−αγ . (16)

If we let Zi be the binary indicator of the event {Ni ≥
γ log n}, then |Yγ | =

∑K
i=1 Zi. In Section VIII, we prove

the following concentration result.

Lemma 4. The number of fragments in Yγ satisfies

Pr
(
||Yγ | − e−αγnpn| > εnpn

)
→ 0, (17)

for any ε > 0 and n large enough.

In addition to characterizing |Yγ | asymptotically, we will
also be interested in the total length of the sequences in
Yγ . Intuitively, this determines how much of codeword x1

is “covered” by fragments in Yγ .

Definition 1. The coverage of Yγ is defined as

cγ =
1

n

K∑
i=1

Ni1{Ni≥γ logn}. (18)

Notice that 0 ≤ cγ ≤ 1 with probability 1.

In order to characterize cγ asymptotically, we will again
resort to the exponential approximation of a geometric distri-
bution through the following lemma.

Lemma 5. If N (n) is a Geometric(pn) random variable and
limn→∞E[N (n)]/ log n = 1/α, then, for any β ≥ 0,

lim
n→∞

E
[
N (n)1{N(n)≥γ logn}

]
/ log n

= E
[
Ñ1{Ñ≥γ}

]
=

(
γ +

1

α

)
e−αγ , (19)

where Ñ is an Exponential(α) random variable.

Using Lemma 5, we can characterize the asymptotic value
of E[cγ ] and show that cγ concentrates around this value. More
precisely, we show the following lemma in Section VIII.

Lemma 6. If cγ is defined as in (18), then

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > ε
)
→ 0, (20)

as n→∞ for any ε > 0.

In particular, Lemma 6 implies that

lim
n→∞

E[cγ ] = (αγ + 1)e−αγ , (21)

and that cγ cannot deviate much from this value with high
probability. If we let B1 = (1 + ε)e−αγnpn and B2 = (1 −
ε)(αγ + 1)e−αγ , and we define the event

B = {|Yγ | > B1} ∪ {cγ < B2}, (22)

then (17) and (20) imply that Pr(B) → 0 as n → ∞. Since
B is independent of {W = 1}, we can upper bound the
probability of error as

Pr(E) ≤ Pr (some xj contains all strings in Yγ |W = 1)

≤ Pr
(
some xj contains all strings in Yγ |B̄,W = 1

)
+ Pr(B)

(i)

≤ |C| n
B1

2nB2
+ Pr(B)

≤ 2nR 2B1 logn 2−nB2 + o(1)

= 2nR 2(1+ε)e
−αγnpn logn−n(1−ε)(αγ+1)e−αγ + o(1)

= 2−n((1−ε)(αγ+1)e−αγ−(1+ε)e−αγpn logn−R) + o(1).

Inequality (i) follows from the union bound and from the fact
that thre are at most nB1 ways to align the strings in Yγ
to a codeword xj in a non-overlapping way and, given this
alignment, 2nB2 bits in xj must be specified. Since pn log n→
α as n→∞, we see that we can achieve a rate R as long as

R < (1− ε)(1 + αγ)e−αγ − (1 + ε)αe−αγ ,

for some ε > 0 and γ > 0. Letting ε→ 0, yields

R < (1 + αγ − α)e−αγ

for some γ > 0. The right-hand side is maximized by setting
γ = 1, which implies that we can achieve any rate R < e−α.
We point out that this choice of γ justifies the optimality of
discarding fragments of length less than log n, first mentioned
in Section IV.



VII. INTERLEAVED-PILOT SCHEME

While the scheme presented in Section VI achieves the
capacity of the torn-paper channel, it is far from being a
practical scheme. In principle, it requires one to consider all
possible K! orderings of the K fragments and trying to align
each one to each of the 2nR codewords.

A natural way to design schemes for a channel that shuf-
fles fragments of the message involves placing “indices” on
the different pieces, which allows properly ordering them.
However, as previously discussed, the randomness in the
tearing locations and in the length of the fragments makes
this approach not straightforward for the torn-paper channel.
In particular, if we place indices at evenly separated points of
the input string Xn, they will appear at random locations of the
fragments, and a fraction of the indices will be fragmented,
making the recovery more difficult. For that reason, in this
section we explore the idea of interleaving a pilot, or a phase
detection sequence [33] throughout the input codewords.
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<latexit sha1_base64="lmJGpwMgj3nsqhUNNiLD/m28gT4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIQd0V3bisYB/YDiWT3mlDM5khyQhl6F+4caGIW//GnX9j2s5CWw8EDufcS849QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzCRBP6JDyUPOqLHSYy+iZhSEWTLtlytu1Z2DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzRNPyZlVBiSMlX3SkLn6eyOjkdaTKLCTs4R62ZuJ/3nd1IRXfsZlkhqUbPFRmApiYjI7nwy4QmbExBLKFLdZCRtRRZmxJZVsCd7yyaukdVH1atXr+1qlfpPXUYQTOIVz8OAS6nAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MH9PGRIA==</latexit>

su(1)

<latexit sha1_base64="QFkQcSz310paOl+kmqsaN3QqI2w=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBItQNyWRgrorunFZwT6gDWEynbRDJ5MwM1FKzKe4caGIW7/EnX/jpM1CWw8MHM65l3vm+DGjUtn2t1FaW9/Y3CpvV3Z29/YPzOphV0aJwKSDIxaJvo8kYZSTjqKKkX4sCAp9Rnr+9Cb3ew9ESBrxezWLiRuiMacBxUhpyTOrwxCpiR+kMvPSpO6cZZ5Zsxv2HNYqcQpSgwJtz/wajiKchIQrzJCUA8eOlZsioShmJKsME0lihKdoTAaachQS6abz6Jl1qpWRFURCP66sufp7I0WhlLPQ15N5ULns5eJ/3iBRwaWbUh4ninC8OBQkzFKRlfdgjaggWLGZJggLqrNaeIIEwkq3VdElOMtfXiXd84bTbFzdNWut66KOMhzDCdTBgQtowS20oQMYHuEZXuHNeDJejHfjYzFaMoqdI/gD4/MHF/CT6A==</latexit>

su(2)

<latexit sha1_base64="C6T8b7jYtx9fzDxCtAhMvlksi/4=">AAAB+nicbVBNS8NAFHypX7V+pXr0EixCvZSkFNRb0YvHCrYV2hA22027dLMJuxulxPwULx4U8eov8ea/cdPmoK0DC8PMe7zZ8WNGpbLtb6O0tr6xuVXeruzs7u0fmNXDnowSgUkXRywS9z6ShFFOuooqRu5jQVDoM9L3p9e5338gQtKI36lZTNwQjTkNKEZKS55ZHYZITfwglZmXJvXmWeaZNbthz2GtEqcgNSjQ8cyv4SjCSUi4wgxJOXDsWLkpEopiRrLKMJEkRniKxmSgKUchkW46j55Zp1oZWUEk9OPKmqu/N1IUSjkLfT2ZB5XLXi7+5w0SFVy4KeVxogjHi0NBwiwVWXkP1ogKghWbaYKwoDqrhSdIIKx0WxVdgrP85VXSazacVuPytlVrXxV1lOEYTqAODpxDG26gA13A8AjP8ApvxpPxYrwbH4vRklHsHMEfGJ8/GXaT6Q==</latexit>

su(m�1)

<latexit sha1_base64="JK9LkmxMkSq86Tdazfq4OVOmlQU=">AAAB/HicbVDLSgMxFM3UV62v0S7dBItQF5YZKai7ohuXFewD2mHIpJk2NMkMSUYYhvorblwo4tYPceffmGlnoa0HAodz7uWenCBmVGnH+bZKa+sbm1vl7crO7t7+gX141FVRIjHp4IhFsh8gRRgVpKOpZqQfS4J4wEgvmN7mfu+RSEUj8aDTmHgcjQUNKUbaSL5dHXKkJ0GYqZmfJXV+7p7NfLvmNJw54CpxC1IDBdq+/TUcRTjhRGjMkFID14m1lyGpKWZkVhkmisQIT9GYDAwViBPlZfPwM3hqlBEMI2me0HCu/t7IEFcq5YGZzKOqZS8X//MGiQ6vvIyKONFE4MWhMGFQRzBvAo6oJFiz1BCEJTVZIZ4gibA2fVVMCe7yl1dJ96LhNhvX981a66aoowyOwQmoAxdcgha4A23QARik4Bm8gjfryXqx3q2PxWjJKnaq4A+szx9ZSpSW</latexit>

Fig. 3. Interleaving a pilot sequence p with codewords su(1), ..., su(m−1)
to form the codeword cu.

The interleaving procedure to construct codewords is illus-
trated in Figure 3. As we describe in more detail below, the
pilot block p and the message blocks si are designed so that
no string of length 2 log n appears in both p and sj for some j.
The “sprinkled” nature of the pilot sequence in cu prevents it
from being fragmented by the tearing process. More precisely,
we let n/m be the length of the pilot block p and of each
message block sj , where m ≥ 2 is a positive integer. Notice
that a fragment of length Ni must contain at least Ni/m pilot
symbols in it. As we will see, provided that Ni is long enough,
this will allow its location on Xn to be uniquely determined.

A. Codebook construction

For a fixed value of m, we will construct a pilot sequence
p of length n/m. Notice that m controls the fraction of
the codeword that is dedicated to pilot symbols. The pilot
sequence p is constructed as a de Bruijn sequence of order
log(n/m) [32]. This sequence has length 2log(n/m) = n/m
and it has the property that each length log(n/m) substring
appears exactly once. For example, a de Bruijn sequence of
order 4 is S = 0000100110101111. Notice that each binary
string of length 4 appears exactly once (when we view S
as a cyclic sequence). In order to simplify the exposition,
we will assume that log(n/m) is an integer. The results can
be extended to the general case, by considering a de Bruijn
sequence of order dlog(n/m)e.

In order to build our codebook, we will interleave code-
words from an erasure code with the pilot sequence p. Suppose
we have an erasure code Cer with rate Rer and blocklength
n/m. We consider applying a random shift to Cer. More
precisely, we generate a length-n/m i.i.d. Ber(1/2) sequence
Zn/m and take the modulo-2 sum of every codeword in Cer
with Zn/m to form a modified codebook C̃er. Notice that this
effectively does not change the code, as the shift Zn/m is the
same for all codewords and can be subtracted at the receiver
side. The probability that a randomly shifted codeword s ∈ C̃er
shares an identical length-k segment with the pilot sequence
can be upper bounded as

Pr (p[i : i+ k − 1] = s[j : j + k − 1],

for 1 ≤ i ≤ n/m− k, 1 ≤ j ≤ n/m− k)

≤ (n/m)22−k

Therefore, if we let k = (2 + δ) log n for δ > 0,

Pr (p[i : i+ k − 1] = s[j : j + k − 1],

for 1 ≤ i ≤ n/m− k, 1 ≤ j ≤ n/m− k)→ 0, (23)

as n→∞. This means that for any ε > 0, for n large enough,
it is possible to choose Zn/m so that at least a (1−ε) fraction
of the shifted codewords in C̃er contain no length-(2+δ) log n
segment that is also in the pilot sequence p.

Let S = {s1, ..., s|S|} ⊂ C̃er be a set with (1 − ε)2
n
mRer

such sequences. We build each codeword cu by taking
m − 1 sequences su(1), ..., su(m−1) from S and interleaving
their symbols with the symbols from p. More precisely, for
each u ∈ {1, ..., |S|}m−1 we build the codeword cu =
(cu[0], ..., cu[n− 1]) as

cu[mt+ j] =

{
p[t], for j = 0,
su(j)[t], for j = 1, ...,m− 1,

for t = 0, ..., n/m − 1, as illustrated in Figure 3. The
resulting codebook C has |S|m−1 = (1− ε)m−12(1−1/m)nRer

codewords. Notice that, for any fixed m and any small ε > 0,
such a codebook can be constructed for n large enough,
yielding a coding rate of approximately (1− 1/m)Rer.

B. Decoding and analysis

As illustrated in Figure 3, a codeword cu will contain one
symbol of p every m bits. Hence, if a given output fragment
has length Ni, it must contain at least Ni/m symbols from
the pilot sequence (though at unknown locations).

Suppose a random fragment has length Ni > (2+δ)m log n.
By the previous argument, it must contain at least (2+δ) log n
pilot symbols. We claim that the location of such a fragment in
its original codeword cu can be uniquely identified by aligning
it to a “generic” codeword c? that only contains the pilot
symbols, as illustrated in Figure 4. Suppose by contradiction
that the fragment can be properly aligned to c? at an incorrect
location. Since sequences of log n consecutive symbols of p
are unique, it must be the case that Ni/m > (2 + δ) log n
pilot symbols of c? align with Ni/m non-pilot symbols of the
fragment. However, these Ni/m symbols must correspond to



consecutive symbols in one of the codewords si from S. Since
no block of length (2 + δ) log n of p appears in any si ∈ S ,
this is a contradiction.

...

...

si
<latexit sha1_base64="d/s/MsacVUPOTdGfyA4A9N29ExM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4AmlMn0ph06mYSZiVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXB8N/M7T6g0T+SjmaQYxHQoecQZNVby/ZiaURjletrn/WrNrbtzkFXiFaQGBZr96pc/SFgWozRMUK17npuaIKfKcCZwWvEzjSllYzrEnqWSxqiDfJ55Ss6sMiBRouyThszV3xs5jbWexKGdnGXUy95M/M/rZSa6CXIu08ygZItDUSaIScisADLgCpkRE0soU9xmJWxEFWXG1lSxJXjLX14l7Yu6d1n3Hq5qjduijjKcwCmcgwfX0IB7aEILGKTwDK/w5mTOi/PufCxGS06xcwx/4Hz+AHiZkfY=</latexit>

cu
<latexit sha1_base64="HDjjIKE+SZJOLLBW1wO58a32AuE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4AmlMl00g6dTMI8hBD6G25cKOLWn3Hn3zhps9DWAwOHc+7lnjlhypnSrvvtVNbWNza3qtu1nd29/YP64VFXJUYS2iEJT2Q/xIpyJmhHM81pP5UUxyGnvXB6V/i9JyoVS8SjzlIaxHgsWMQI1lby/RjrSRjlZDY0w3rDbbpzoFXilaQBJdrD+pc/SoiJqdCEY6UGnpvqIMdSM8LprOYbRVNMpnhMB5YKHFMV5PPMM3RmlRGKEmmf0Giu/t7IcaxUFod2ssiolr1C/M8bGB3dBDkTqdFUkMWhyHCkE1QUgEZMUqJ5ZgkmktmsiEywxETbmmq2BG/5y6uke9H0Lpvew1WjdVvWUYUTOIVz8OAaWnAPbegAgRSe4RXeHOO8OO/Ox2K04pQ7x/AHzucPclmR8g==</latexit>

c?
<latexit sha1_base64="AvRTd2jamESZLub0eS1sP/WGauU=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KooDeLXjxWsLbQlLLZvrRLN5uwuxFK6N/w4kERr/4Zb/4bN20O2jqwMMy8x5udIBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfj29xvP6HSPJYPZpJgL6JDyUPOqLGS70fUjIIwY9P+db9ac+vuDGSZeAWpQYFmv/rlD2KWRigNE1TrrucmppdRZTgTOK34qcaEsjEdYtdSSSPUvWyWeUpOrDIgYazsk4bM1N8bGY20nkSBncwz6kUvF//zuqkJr3oZl0lqULL5oTAVxMQkL4AMuEJmxMQSyhS3WQkbUUWZsTVVbAne4peXyeNZ3Tuve/cXtcZNUUcZjuAYTsGDS2jAHTShBQwSeIZXeHNS58V5dz7moyWn2DmEP3A+fwAggZG8</latexit>

y
<latexit sha1_base64="mxWTzwBPOS7x2+h9TuAMcXrEfO8=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KooMeiF48VbC22oWy2m3bpZhN2X4QS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSKQw6LrfTmlldW19o7xZ2dre2d2r7h+0TZxqxlsslrHuBNRwKRRvoUDJO4nmNAokfwjGN7n/8MS1EbG6x0nC/YgOlQgFo2ilx15EcRSE2WTar9bcujsDWSZeQWpQoNmvfvUGMUsjrpBJakzXcxP0M6pRMMmnlV5qeELZmA5511JFI278bJZ4Sk6sMiBhrO1TSGbq742MRsZMosBO5gnNopeL/3ndFMMrPxMqSZErNv8oTCXBmOTnk4HQnKGcWEKZFjYrYSOqKUNbUsWW4C2evEzaZ3XvvO7dXdQa10UdZTiCYzgFDy6hAbfQhBYwUPAMr/DmGOfFeXc+5qMlp9g5hD9wPn8A/7qRIA==</latexit>

Fig. 4. Aligning a fragment y incorrectly to the generic codeword c? requires
|y|/m pilot symbols in c? to align with |y|/m consecutive symbols of si.

This suggests a straightforward decoding procedure for
the code outlined above. Each of the received fragments
with length at least (2 + δ)m log n is aligned to c?. Shorter
fragments are discarded, and their locations on c? are treated
as erasures. This effectively converts the channel into an
erasure channel (though not memoryless) with a total number
of erasures given by

K∑
i=1

Ni1{Ni<(2+δ) logn} = n(1− c(2+δ)m), (24)

where c(2+δ)m is the coverage by fragments of length at least
(2+δ)m log n, as defined in Definition 1. Hence, as long as the
rate of the original erasure code Cer satisfies Rer < c(2+δ)m,
the code for the torn-paper channel can be decoded with small
error probability as n → ∞. From Lemma 6, we know that
c(2+δ)m concentrates around its mean as n → ∞. Hence we
can choose Rer arbitrarily close to E[c(2+δ)m] and achieve
arbitrarily close to rate(

1− 1
m

)
lim
n→∞

E[c(2+δ)m]. (25)

Since δ > 0 can be chosen arbitrarily small, and using (21),
as n→∞, we can achieve any rate below(

1− 1
m

)
lim
n→∞

E[c2m] =
(
1− 1

m

)
(2mα+ 1) e−2mα. (26)

This expression can be optimized over positive integers m,
yielding the achievable curve shown in Figure 2. We notice
that the gap between this efficient interleaved-pilot approach
and the actual capacity is still very significant.

VIII. PROOFS OF LEMMAS

Lemma 1. The number of fragments in Yk satisfies

Pr (||Yk| − npnqk,n| > εnpn) ≤ 4e−np
2
nε

2/4,

for any ε > 0 and n large enough.

Proof of Lemma 1. First notice that, since K = 1 +
∑n
i=2 Ti,

where T2, ..., Tn are i.i.d. Bernoulli(pn) random variables,
E[K] = npn + (1− pn), and using Hoeffding’s inequality,

Pr(|K − npn| > δnpn)

= Pr (|K − E[K] + (1− pn)| > δnpn)

≤ Pr (|K − E[K]| > δnpn − (1− pn))

= Pr

(∣∣∣∣∣
n∑
i=2

(Ti − pn)

∣∣∣∣∣ > (n− 1)
δnpn − (1− pn)

n− 1

)
≤ 2e−2(n−1)(

δnpn−(1−pn)
n−1 )

2

≤ 2e−2n( δnpn−(1−pn)
n )

2

≤ 2e−np
2
nδ

2

, (27)

where the last inequality holds for n large enough.
Now suppose the sequence N1, N2, ... of independent

Geometric(pn) random variables is an infinite sequence (and
does not stop at K). Let Zi be the binary indicator of
the event {(k − 1)/L ≤ Ni/ log n < k/L}, and Z̃ =∑npn
i=1 Zi. Intuitively, |Yk| and Z̃ should be close. In particular,

||Yk| − Z̃| ≤ |K − npn|. Moreover, E[Z̃] = npnqk,n. If
|Z̃−npnqk,n| < 1

2εnpn and ||Yk|−Z̃| < |K−npn| < 1
2εnpn,

by the triangle inequality, ||Yk|−npnqk,n| < εnpn. Therefore,

Pr (||Yk| − npnqk,n| > εnpn)

≤ Pr
(
|Z̃ − npnqk,n| > 1

2εnpn

)
+ Pr

(
|K − npn| > 1

2εnpn
)

≤ 2e−npnε
2/2 + 2e−np

2
nε

2/4 ≤ 4e−np
2
nε

2/4

where we used Hoeffding’s inequality and (27).

Lemma 2. If N (n) is a Geometric(pn) random variable and
limn→∞E[N (n)]/ log n = 1/α, then

lim
n→∞

Pr
(
N (n) ≥ β log n

)
= e−αβ .

Proof of Lemma 2. By definition,

Pr
(
N (n) ≥ β log n

)
= (1− pn)dβ logne

=

(
1− 1

E[N (n)]

)E[N(n)](dβ logne/E[N(n)])

.

As n → ∞, dβ log ne/E[N (n)] → αβ, E[N (n)] → ∞, and
(1− 1/E[N (n)])E[N(n)] → e−1, implying the lemma.

Lemma 3. If Yk is defined as in (5) for k = 1, ...,∞,

lim
n→∞

H(Y)

n
≤
∞∑
k=1

lim
n→∞

H(Yk)

n
.

Proof of Lemma 3. For a fixed integer A, we define Y≥A =
{~Yi : Nπi ≥ (A/L) log n} and we have

lim
n→∞

H(Y)

n
≤ lim
n→∞

A∑
k=1

H(Yk)

n
+ lim
n→∞

H(Y≥A)

n

=

A∑
k=1

lim
n→∞

H(Yk)

n
+ lim
n→∞

H(Y≥A)

n
. (28)



If we define cγ as in Definition 1, from Lemma 6, we have

lim
n→∞

E
[
cA/L

]
= (αA/L+ 1)e−αA/L.

Moreover, for any δ > 0, from Lemma 6, the event

A = {cA/L > (αA/L+ 1)e−αA/L + δ}

has vanishing probability as n→∞. This allows us to write

H(Y≥A) ≤ H(Y≥A|Ā) +H(Y≥A|A) Pr(A) + 1

≤ H(Y≥A|Ā) + 2nPr(A) + 1

≤ 2n
[
(αA/L+ 1)e−αA/L + δ

]
+ o(n).

Hence, from (28), we have that for every A and δ > 0,

lim
n→∞

H(Y)

n
≤

A∑
k=1

lim
n→∞

H(Yk)

n
+ 2(αA/L+ 1)e−αA/L + 2δ.

Notice that (αA/L + 1)e−αA/L → 0 as A → ∞. Therefore,
we can let δ → 0 and A→∞, and we conclude that

lim
n→∞

H(Y)

n
≤
∞∑
k=1

lim
n→∞

H(Yk)

n
.

Lemma 4. The number of fragments in Yγ satisfies

Pr
(
||Yγ | − e−αγnpn| > εnpn

)
≤ 4e−np

2
nε

2/9

for any ε > 0 and n large enough.

Proof of Lemma 4. Let Zi = 1{Ni≥γ logn}, for i = 1, 2, ....
Then |Yγ | =

∑K
i=1 Zi. Since K is random (and not indepen-

dent of the Nis), we need to follow similar steps to those in
the proof of Lemma 1.

Let us assume that the sequence N1, N2, ... of independent
Geometric(pn) random variables is an infinite sequence and
let Z̃ =

∑npn
i=1 Zi. Notice that Z̃ is a sum of i.i.d. Bernoulli

random variables with

E[Z̃] = npn Pr(N1 ≥ γ log n), (29)

and the standard Hoeffding’s inequality can be applied. More-
over, from (29) and Lemma 2,

lim
n→∞

E[Z̃]/(npn) = e−αγ

and, for any δ > 0, |E[Z̃] − e−αγnpn| < δnpn, for n large
enough. If we set δ = ε/3, for n large enough, we have
|E[Z̃]−e−αγnpn| < 1

3εnpn. Moreover, if |Z̃−E[Z̃]| < 1
3εnpn

and ||Yγ | − Z̃| < |K − npn| < 1
3εnpn, by the triangle

inequality (applied twice), ||Yγ | − e−αγnpn| < εnpn. Hence,

Pr
(
||Yγ | − e−αγnpn| > εnpn

)
≤ Pr

(
|Z̃ − E[Z̃]| > 1

3εnpn

)
+ Pr

(∣∣∣|Yγ | − Z̃∣∣∣ > 1
3εnpn

)
≤ Pr

(∣∣∣Z̃ − E|Z|∣∣∣ > 1
3εnpn

)
+ Pr

(
|K − npn| > 1

3εnpn
)

≤ 2e−2npnε
2/9 + 2e−np

2
nε

2/9 ≤ 4e−np
2
nε

2/9

where we used Hoeffding’s inequality and (27).

Lemma 5. If N (n) is a Geometric(pn) random variable and
limn→∞E[N (n)]/ log n = 1/α, then, for any β ≥ 0,

lim
n→∞

E
[
N (n)1{N(n)≥γ logn}

]
/ log n

= E
[
Ñ1{Ñ≥γ}

]
=

(
γ +

1

α

)
e−αγ ,

where Ñ is an Exponential(α) random variable.

Proof of Lemma 5. We first notice that
1

log n
E
[
N (n)1{N(n)≥γ logn}

]
=

1

log n
E
[
N (n)

∣∣∣N (n) ≥ γ log n
]

Pr
(
N (n) ≥ γ log n

)
=

1

log n

(
dγ log ne+ E[N (n)]

)
Pr
(
N (n) ≥ γ log n

)
,

where we used the memoryless property of the Geomet-
ric distribution. As n → ∞, we have dγ log ne/ log n →
γ, E[N (n)]/ log n → 1/α. Moreover, from Lemma 2,
Pr
(
N (n) ≥ γ log n

)
→ e−αγ , and the lemma follows.

Lemma 6. If cγ is defined as in (18), then, for any ε > 0,

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > ε
)
≤ 19

ε2np2n

for n large enough.

Proof of Lemma 6. Since cγ = 1
n

∑K
i=1Ni1{Ni≥γ logn},

where K is a random variable, we once again follow an
approach similar to the one in the proof of Lemma 1.

Let us assume that the sequence N1, N2, ... of independent
Geometric(pn) random variables is an infinite sequence. Let
Zi = Ni1{Ni≥γ logn}, and Z̃ =

∑npn
i=1 Zi. Since E[Z̃] =

npnE[N11{N1≥γ logn}], by Lemma 5,

lim
n→∞

E[Z̃]

n
→ α

(
γ +

1

α

)
e−αγ . (30)

Intuitively, Z := ncγ and Z̃ should be close. If Z̃ > Z,
then npn > K, and

|Z − Z̃| =
npn∑

i=K+1

Zi ≤
npn∑

i=K+1

Ni ≤

∣∣∣∣∣
npn∑
i=1

Ni − n

∣∣∣∣∣ . (31)

If Z > Z̃, then K > npn, and

|Z − Z̃| =
K∑

i=npn+1

Zi ≤
K∑

i=npn+1

Ni ≤

∣∣∣∣∣
npn∑
i=1

Ni − n

∣∣∣∣∣ . (32)

Hence, for any δ > 0, we have that

Pr
(
|Z − Z̃| > δnpn

)
≤ Pr

(∣∣∣∣∣
npn∑
i=1

Ni − n

∣∣∣∣∣ > δnpn

)
≤ e−npn(δ−ln(1+δ)) + e−npn(−δ−ln(1−δ))

≤ 2e−npn(δ−ln(1+δ)). (33)

where we used the Chernoff bound for geometrically dis-
tributed random variables [34], and the fact that x−ln(1+x) <
−x− ln(1− x) for x > 0.



To bound the probability that |Z̃−E[Z̃]| > δn, we can use
a Chernoff bound, which requires the computation of the rate
function for N11{N1≥γ logn}. A simpler approach is to use
Chebyshev’s inequality, which yields

Pr
(
|Z̃ − E[Z̃]| > δn

)
≤ Var(Z1)

δ2n
≤ E[Z2

1 ]

δ2n

=
E[N2

11{N1≥γ logn}]

δ2n
≤ E[N2

1 ]

δ2n
=

2− pn
δ2np2n

. (34)

From (30), we know that for any δ > 0 and n large enough,

|E[Z̃]− n(αγ + 1)e−αγ | < δn.

Moreover, if |Z̃−E[Z̃]| < 1
3εn, |ncγ−Z̃| < 1

3εn, and |E[Z̃]−
n(αγ+ 1)e−αγ | < 1

3εn, then, by the triangle inequality, |cγ −
(αγ + 1)e−αγ | < ε. Therefore, for n large enough so that
|E[Z̃]− n(αγ + 1)e−αγ | < 1

3εn,

Pr
(∣∣cγ − (αγ + 1)e−αγ

∣∣ > ε
)

≤ Pr
(
|Z̃ − E[Z̃]| > 1

3εn
)

+ Pr
(
|Z̃ − Z| > 1

3εn
)

≤ Pr
(
|Z̃ − E[Z̃]| > 1

3εn
)

+ Pr
(
|Z̃ − Z| > 1

3εnpn

)
≤ 18/(ε2np2n) + 2e−npn(ε/3−ln(1+ε/3)) ≤ 19/(ε2np2n),

where we used (33) and (34), and the last inequality follows
for n large enough.
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